// 顺序查找
int SequentialSearch(vector
for (int i = 0; i < v.size(); ++i)
if (v[i] == k)
return i;
return -1;
}
// 二分查找(折半查找):对于已排序,若无序,需要先排序
// 非递归
int BinarySearch(vector
{
if (v.size() <= 0)
return -1;
int low = 0;
int high = v.size() - 1;
while (low <= high)
{
int mid = low + (high - low) / 2;
if (v[mid] == value)
return mid;
else if (v[mid] > value)
high = mid - 1;
else
low = mid + 1;
}
return -1;
}
// 递归
int BinarySearch2(vector
{
if (low > high)
return -1;
int mid = low + (high - low) / 2;
if (v[mid] == value)
return mid;
else if (v[mid] > value)
return BinarySearch2(v, value, low, mid - 1);
else
return BinarySearch2(v, value, mid + 1, high);
}
//插值查找
int InsertionSearch(int a[], int value, int low, int high)
{
int mid = low+(value-a[low])/(a[high]-a[low])*(high-low);
if(a[mid]==value)
return mid;
if(a[mid]>value)
return InsertionSearch(a, value, low, mid-1);
if(a[mid] return InsertionSearch(a, value, mid+1, high); } // 斐波那契查找 #include "stdafx.h" #include #include using namespace std; const int max_size=20;//斐波那契数组的长度 /*构造一个斐波那契数组*/ void Fibonacci(int * F) { F[0]=0; F[1]=1; for(int i=2;i F[i]=F[i-1]+F[i-2]; } /*定义斐波那契查找法*/ int FibonacciSearch(int *a, int n, int key) //a为要查找的数组,n为要查找的数组长度,key为要查找的关键字 { int low=0; int high=n-1; int F[max_size]; Fibonacci(F);//构造一个斐波那契数组F int k=0; while(n>F[k]-1)//计算n位于斐波那契数列的位置 ++k; int * temp;//将数组a扩展到F[k]-1的长度 temp=new int [F[k]-1]; memcpy(temp,a,n*sizeof(int)); for(int i=n;i temp[i]=a[n-1]; while(low<=high) { int mid=low+F[k-1]-1; if(key { high=mid-1; k-=1; } else if(key>temp[mid]) { low=mid+1; k-=2; } else { if(mid return mid; //若相等则说明mid即为查找到的位置 else return n-1; //若mid>=n则说明是扩展的数值,返回n-1 } } delete [] temp; return -1; } int main() { int a[] = {0,16,24,35,47,59,62,73,88,99}; int key=100; int index=FibonacciSearch(a,sizeof(a)/sizeof(int),key); cout< return 0; } #include #include #define SUCCESS 1 #define UNSUCCESS 0 #define OVERFLOW -1 #define OK 1 #define ERROR -1 typedef int Status; typedef int KeyType; typedef struct{ KeyType key; }RcdType; typedef struct{ RcdType *rcd; int size; int count; int *tag; }HashTable; int hashsize[] = { 11, 31, 61, 127, 251, 503 }; int index = 0; Status InitHashTable(HashTable &H, int size){ int i; H.rcd = (RcdType *)malloc(sizeof(RcdType)*size); H.tag = (int *)malloc(sizeof(int)*size); if (NULL == H.rcd || NULL == H.tag) return OVERFLOW; for (i = 0; i< size; i++) H.tag[i] = 0; H.size = size; H.count = 0; return OK; } int Hash(KeyType key, int m){ return (3 * key) % m; } void collision(int &p, int m){ //线性探测 p = (p + 1) % m; } Status SearchHash(HashTable H, KeyType key, int &p, int &c) { p = Hash(key, H.size); int h = p; c = 0; while ((1 == H.tag[p] && H.rcd[p].key != key) || -1 == H.tag[p]){ collision(p, H.size); c++; } if (1 == H.tag[p] && key == H.rcd[p].key) return SUCCESS; else return UNSUCCESS; } void printHash(HashTable H) //打印哈希表 { int i; printf("key : "); for (i = 0; i < H.size; i++) printf("%3d ", H.rcd[i].key); printf("\n"); printf("tag : "); for (i = 0; i < H.size; i++) printf("%3d ", H.tag[i]); printf("\n\n"); } Status InsertHash(HashTable &H, KeyType key); //对函数的声明 //重构 Status recreateHash(HashTable &H){ RcdType *orcd; int *otag, osize, i; orcd = H.rcd; otag = H.tag; osize = H.size; InitHashTable(H, hashsize[index++]); //把所有元素,按照新哈希函数放到新表中 for (i = 0; i < osize; i++){ if (1 == otag[i]){ InsertHash(H, orcd[i].key); } } } Status InsertHash(HashTable &H, KeyType key){ int p, c; if (UNSUCCESS == SearchHash(H, key, p, c)){ //没有相同key if (c*1.0 / H.size < 0.5){ //冲突次数未达到上线 //插入代码 H.rcd[p].key = key; H.tag[p] = 1; H.count++; return SUCCESS; } else recreateHash(H); //重构哈希表 } return UNSUCCESS; } Status DeleteHash(HashTable &H, KeyType key){ int p, c; if (SUCCESS == SearchHash(H, key, p, c)){ //删除代码 H.tag[p] = -1; H.count--; return SUCCESS; } else return UNSUCCESS; } void main() { printf("-----哈希表-----\n"); HashTable H; int i; int size = 11; KeyType array[8] = { 22, 41, 53, 46, 30, 13, 12, 67 }; KeyType key; RcdType e; //初始化哈希表 printf("初始化哈希表\n"); if (SUCCESS == InitHashTable(H, hashsize[index++])) printf("初始化成功\n"); //插入哈希表 printf("插入哈希表\n"); for (i = 0; i <= 7; i++){ key = array[i]; InsertHash(H, key); printHash(H); } //删除哈希表 printf("删除哈希表\n"); int p, c; if (SUCCESS == DeleteHash(H, 12)) { printf("删除成功,此时哈希表为:\n"); printHash(H); } //查询哈希表 printf("查询哈希表\n"); if (SUCCESS == SearchHash(H, 67, p, c)) printf("查询成功\n"); //再次插入,测试哈希表的重构 printf("再次插入,测试哈希表的重构:\n"); KeyType array1[8] = { 27, 47, 57, 47, 37, 17, 93, 67 }; for (i = 0; i <= 7; i++){ key = array1[i]; InsertHash(H, key); printHash(H); } } /* 二叉搜索树的查找算法: 在二叉搜索树b中查找x的过程为: 1. 若b是空树,则搜索失败,否则: 2. 若x等于b的根节点的数据域之值,则查找成功;否则: 3. 若x小于b的根节点的数据域之值,则搜索左子树;否则: 4. 查找右子树。 */ // 在根指针T所指二叉查找树中递归地查找其关键字等于key的数据元素,若查找成功, // 则指针p指向該数据元素节点,并返回TRUE,否则指针指向查找路径上访问的最终 // 一个节点并返回FALSE,指针f指向T的双亲,其初始调用值为NULL Status SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p){ if(!T) { //查找不成功 p=f; return false; } else if (key == T->data.key) { //查找成功 p=T; return true; } else if (key < T->data.key) //在左子树中继续查找 return SearchBST(T->lchild, key, T, p); else //在右子树中继续查找 return SearchBST(T->rchild, key, T, p); } #define BLACK 1 #define RED 0 #include using namespace std; class bst { private: struct Node { int value; bool color; Node *leftTree, *rightTree, *parent; Node() : value(0), color(RED), leftTree(NULL), rightTree(NULL), parent(NULL) { } Node* grandparent() { if(parent == NULL){ return NULL; } return parent->parent; } Node* uncle() { if(grandparent() == NULL) { return NULL; } if(parent == grandparent()->rightTree) return grandparent()->leftTree; else return grandparent()->rightTree; } Node* sibling() { if(parent->leftTree == this) return parent->rightTree; else return parent->leftTree; } }; void rotate_right(Node *p){ Node *gp = p->grandparent(); Node *fa = p->parent; Node *y = p->rightTree; fa->leftTree = y; if(y != NIL) y->parent = fa; p->rightTree = fa; fa->parent = p; if(root == fa) root = p; p->parent = gp; if(gp != NULL){ if(gp->leftTree == fa) gp->leftTree = p; else gp->rightTree = p; } } void rotate_left(Node *p){ if(p->parent == NULL){ root = p; return; } Node *gp = p->grandparent(); Node *fa = p->parent; Node *y = p->leftTree; fa->rightTree = y; if(y != NIL) y->parent = fa; p->leftTree = fa; fa->parent = p; if(root == fa) root = p; p->parent = gp; if(gp != NULL){ if(gp->leftTree == fa) gp->leftTree = p; else gp->rightTree = p; } } void inorder(Node *p){ if(p == NIL) return; if(p->leftTree) inorder(p->leftTree); cout << p->value << " "; if(p->rightTree) inorder(p->rightTree); } string outputColor (bool color) { return color ? "BLACK" : "RED"; } Node* getSmallestChild(Node *p){ if(p->leftTree == NIL) return p; return getSmallestChild(p->leftTree); } bool delete_child(Node *p, int data){ if(p->value > data){ if(p->leftTree == NIL){ return false; } return delete_child(p->leftTree, data); } else if(p->value < data){ if(p->rightTree == NIL){ return false; } return delete_child(p->rightTree, data); } else if(p->value == data){ if(p->rightTree == NIL){ delete_one_child (p); return true; } Node *smallest = getSmallestChild(p->rightTree); swap(p->value, smallest->value); delete_one_child (smallest); return true; }else{ return false; } } void delete_one_child(Node *p){ Node *child = p->leftTree == NIL ? p->rightTree : p->leftTree; if(p->parent == NULL && p->leftTree == NIL && p->rightTree == NIL){ p = NULL; root = p; return; } if(p->parent == NULL){ delete p; child->parent = NULL; root = child; root->color = BLACK; return; } if(p->parent->leftTree == p){ p->parent->leftTree = child; } else { p->parent->rightTree = child; } child->parent = p->parent; if(p->color == BLACK){ if(child->color == RED){ child->color = BLACK; } else delete_case (child); } delete p; } void delete_case(Node *p){ if(p->parent == NULL){ p->color = BLACK; return; } if(p->sibling()->color == RED) { p->parent->color = RED; p->sibling()->color = BLACK; if(p == p->parent->leftTree) rotate_left(p->sibling()); else rotate_right(p->sibling()); } if(p->parent->color == BLACK && p->sibling()->color == BLACK && p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK) { p->sibling()->color = RED; delete_case(p->parent); } else if(p->parent->color == RED && p->sibling()->color == BLACK && p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK) { p->sibling()->color = RED; p->parent->color = BLACK; } else { if(p->sibling()->color == BLACK) { if(p == p->parent->leftTree && p->sibling()->leftTree->color == RED && p->sibling()->rightTree->color == BLACK) { p->sibling()->color = RED; p->sibling()->leftTree->color = BLACK; rotate_right(p->sibling()->leftTree); } else if(p == p->parent->rightTree && p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == RED) { p->sibling()->color = RED; p->sibling()->rightTree->color = BLACK; rotate_left(p->sibling()->rightTree); } } p->sibling()->color = p->parent->color; p->parent->color = BLACK; if(p == p->parent->leftTree){ p->sibling()->rightTree->color = BLACK; rotate_left(p->sibling()); } else { p->sibling()->leftTree->color = BLACK; rotate_right(p->sibling()); } } } void insert(Node *p, int data){ if(p->value >= data){ if(p->leftTree != NIL) insert(p->leftTree, data); else { Node *tmp = new Node(); tmp->value = data; tmp->leftTree = tmp->rightTree = NIL; tmp->parent = p; p->leftTree = tmp; insert_case (tmp); } } else { if(p->rightTree != NIL) insert(p->rightTree, data); else { Node *tmp = new Node(); tmp->value = data; tmp->leftTree = tmp->rightTree = NIL; tmp->parent = p; p->rightTree = tmp; insert_case (tmp); } } } void insert_case(Node *p){ if(p->parent == NULL){ root = p; p->color = BLACK; return; } if(p->parent->color == RED){ if(p->uncle()->color == RED) { p->parent->color = p->uncle()->color = BLACK; p->grandparent()->color = RED; insert_case(p->grandparent()); } else { if(p->parent->rightTree == p && p->grandparent()->leftTree == p->parent) { rotate_left (p); rotate_right (p); p->color = BLACK; p->leftTree->color = p->rightTree->color = RED; } else if(p->parent->leftTree == p && p->grandparent()->rightTree == p->parent) { rotate_right (p); rotate_left (p); p->color = BLACK; p->leftTree->color = p->rightTree->color = RED; } else if(p->parent->leftTree == p && p->grandparent()->leftTree == p->parent) { p->parent->color = BLACK; p->grandparent()->color = RED; rotate_right(p->parent); } else if(p->parent->rightTree == p && p->grandparent()->rightTree == p->parent) { p->parent->color = BLACK; p->grandparent()->color = RED; rotate_left(p->parent); } } } } void DeleteTree(Node *p){ if(!p || p == NIL){ return; } DeleteTree(p->leftTree); DeleteTree(p->rightTree); delete p; } public: bst() { NIL = new Node(); NIL->color = BLACK; root = NULL; } ~bst() { if (root) DeleteTree (root); delete NIL; } void inorder() { if(root == NULL) return; inorder (root); cout << endl; } void insert (int x) { if(root == NULL){ root = new Node(); root->color = BLACK; root->leftTree = root->rightTree = NIL; root->value = x; } else { insert(root, x); } } bool delete_value (int data) { return delete_child(root, data); } private: Node *root, *NIL; };