- Python训练营打卡Day8(2025.4.27)
2301_80505456
python算法开发语言
知识点见示例代码字典的简单介绍标签编码连续特征的处理:归一化和标准化至此,常见的预处理方式都说完了作业:对心脏病数据集的特征用上述知识完成,一次性用所有的处理方式完成预处理,尝试手动完成,多敲几遍代码。由于所给数据集已是处理过的数据集,以下将按所给数据集的处理情况对连续特征进行归一化和标准化。首先观察数据,需处理数据共有5列,分别是:age,trestbps,chol,thalach,oldpea
- 基于大模型的颅前窝底脑膜瘤诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究意义与创新点二、颅前窝底脑膜瘤概述2.1定义与分类2.2发病机制与病因2.3临床表现与症状三、大模型预测原理与方法3.1大模型介绍3.2数据收集与预处理3.3模型训练与验证四、术前预测与准备4.1肿瘤特征预测4.2手术风险预测4.3术前检查与评估4.4患者沟通与教育五、手术方案制定5.1手术入路选择5.2手术步骤规划5.3术中监测与应急
- GraphRAG革命性突破!美国Cedars-Sinai医疗中心揭秘:知识增强大模型如何重塑阿尔茨海默病基因研究与治疗?
DeepSeek-大模型系统教程
人工智能大模型chatgpt语言模型ai大模型学习大模型教程
摘要:随着阿尔茨海默病患者人数不断攀升,Cedars-Sinai医学中心通过知识图谱和AI技术,打造了AlzKB阿尔茨海默病知识库,用以推动新型病因和药物的发现。本文详解这些前沿工具如何结合,赋能专业人士实现高效科研转化,为认知障碍领域带来突破正文据估计,690万65岁及以上的美国人患有阿尔茨海默病。如果没有重大的医学突破,预计到2060年,美国这一数字将上升到1380万,到2050年全球将上升到
- 基于大模型预测胸椎管狭窄诊疗全流程的研究报告
LCG元
围术期危险因子预测模型研究人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点1.3研究方法与数据来源二、胸椎管狭窄症概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3用于胸椎管狭窄预测的优势四、术前大模型预测4.1预测指标与数据收集4.2模型训练与验证4.3预测结果分析与临床意义五、基于预测的手术方案制定5.1手术方式选择依据5
- 学习记录:DAY35
2301_79760424
每日学习记录学习
前言自从得了精神病,整个人精神多了!日程今天也早起了,美中不足的是昨天没怎么睡。本来很气很暴躁的,学了一会释怀了,反正这种状态也不是不能学,多来几天就习惯了。--------7.2--------偷懒了,这两天几乎就没干什么事情学习内容省流:redis入门HttpClient微信小程序缓存机制1.redis入门基于内存储存的数据库redis.net.cn0)安装window版本:Releases·
- 基于大模型的地中海贫血全流程预测与治疗管理研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与目标1.3研究方法与数据来源二、地中海贫血概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征2.4临床表现与诊断方法三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3应用于地中海贫血预测的优势四、术前风险预测与手术方案制定4.1术前风险因素分析4.2大模型预测模型构建与验证4.3根据预测制定个性化手术方案五、
- 高通量多因子检测赋能胰腺癌生物标志物发现与临床转化
LabEx
Luminex液相芯片胰腺癌多因子检测斑蝥素乐备实labex科研服务
研究背景:胰腺癌作为恶性程度极高的消化系统肿瘤,其死亡率与发病率近乎持平的临床特征始终是医学领域的重大挑战。与多数癌症生存率稳步提升的趋势不同,胰腺癌的诊疗进展长期滞后——超过50%的患者确诊时已处于疾病晚期,对传统放化疗方案呈现显著耐药性。据美国2017年流行病学数据显示,胰腺癌患者5年相对生存率仅8%,尽管男性患者生存率呈现年均0.3%的微弱提升,但整体预后仍处于恶性肿瘤谱系的最底端,临床对创
- 流量的代价:当“带货神话”撞上法律利剑
数据与人工智能律师
人工智能云计算区块链网络算法
首席数据官高鹏律师数字经济团队创作AI辅助一、数据洪流中的“信任坍塌”在数字经济的浪潮中,一场场直播带货的狂欢正在重塑商业生态。屏幕前的KOL们,用话术编织出商品的“完美图景”,观众在“限时折扣”“独家首发”的鼓点中按下订单键。然而,当流量红利与法律底线形成对冲,一场关于信任的博弈悄然展开。某平台头部主播曾宣称某保健品可“逆转糖尿病”,结果产品成分仅为普通压片糖果;另一直播间用“癌症克星”“三天见
- DAY 10 机器学习建模与评估
心落薄荷糖
Python训练营机器学习人工智能
知识点:1.数据集的划分2.机器学习模型建模的三行代码3.机器学习模型分类问题的评估今日代码比较多,但是难度不大,仔细看看示例代码,好好理解下这几个评估指标。作业:尝试对心脏病数据集采用机器学习模型建模和评估#一、导入库importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。impor
- P25:LSTM实现糖尿病探索与预测
?Agony
lstm人工智能rnn
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、相关技术1.LSTM基本概念LSTM(长短期记忆网络)是RNN(循环神经网络)的一种变体,它通过引入特殊的结构来解决传统RNN中的梯度消失和梯度爆炸问题,特别适合处理序列数据。结构组成:遗忘门:决定丢弃哪些信息,通过sigmoid函数输出0-1之间的值,表示保留或遗忘的程度。输入门:决定更新哪些信息,同样通过sigmoid函数控制更新
- AI助力基因遗传疾病检测:现状与未来
t0_54program
大数据与人工智能人工智能个人开发
在现代医学领域,与基因紊乱相关疾病的早期检测至关重要。像肺癌,早期诊断的患者5年生存率可达57%,而四期癌症患者生存率仅3%。阿尔茨海默病的早期检测,能让患者改变生活方式、参与临床试验并提前治疗脑部退化症状,有效延长生命。尽管基因检测对评估晚发性阿尔茨海默病的可能性有帮助,对早发性阿尔茨海默病也有指示作用,但其检测技术仍有待完善。目前,仅基于生物学研究的疾病检测技术多样,虽对特定病例精确,但通常需
- 构建医学文献智能助手:基于 LangChain 的专业领域 RAG 系统实践
前言在当今医疗科技快速发展的时代,每天都有数以千计的医学研究成果在全球范围内发表。从临床试验报告到基础研究论文,从流行病学调查到药物研发数据,这些专业文献承载着推动医学进步的重要知识。然而,面对如此海量且专业性极强的文献资料,医疗从业者往往感到力不从心。如何在有限的时间内,准确把握文献核心价值,并将其转化为临床实践的指导?这个问题一直困扰着整个医疗行业。1.项目背景与业务价值1.1医学文献阅读的困
- 2、喉癌患者的肿瘤委员会决策
water
贝叶斯网络助力临床决策支持系统喉癌肿瘤委员会多学科治疗
喉癌患者的肿瘤委员会决策1.喉癌概述喉癌是一种起源于喉部组织的恶性肿瘤,主要影响喉部的黏膜和结构。根据最新统计,全球每年约有157,000例喉癌病例,而在德国,每年新增约3,600例,约占所有头颈癌病例的25%-30%。尽管喉癌的五年生存率约为47%,但近年来,随着早期诊断和综合治疗的进步,生存率有所提高。此外,随着生存率的提升,患者的生活质量和功能恢复也成为关注的重点。1.1流行病学喉癌在全球范
- Python学习Day10
m0_64472246
python打卡学习python
学习来源:@浙大疏锦行知识点:数据集的划分机器学习模型建模的三行代码机器学习模型分类问题的评估对心脏病数据集采用机器学习模型建模和评估importpandasaspdfile_path="heart.csv"data=pd.read_csv(file_path)data.info()data.isnull().sum()#划分训练集和测试机fromsklearn.model_selectionim
- 从0开始学习R语言--Day31--概率图模型
Chef_Chen
学习
在探究变量之间的相关性时,由于并不是每次分析数据时所用的样本集都能囊括所有的情况,所以单纯从样本集去下判断会有武断的嫌疑;同样的,我们有时候也想要在数据样本不够全面时就能对结果有个大概的了解。例如医生在给患者做诊断时,有些检查需要耗费的时间很久,但仅仅凭借一些其他的症状,他就可以对病人患某种病有个大概的猜想,从而先做出一些措施来降低风险,毕竟等到疾病真正发生时可能会来不及。概率图模型便是能够同时进
- C# TCP心跳机制:让客户端拥有“不死之身”,网络波动?不存在的!
墨夶
C#学习资料网络c#tcp/ip
1.TCP连接的“心脏病”与心跳的救赎监控面板上的“连接断开”提示,突然发现游戏服务器的玩家都在“消失”——原来TCP连接在深夜的网络波动中“猝死”了!2.从“心跳骤停”到“永不掉线”的重生之路2.1原理篇:心跳机制的“三重防护”核心概念:心跳包:客户端定时发送的“我还在”信号(如{"type":"heartbeat"})超时检测:如果超过HeartbeatTimeout秒未收到心跳响应,触发断开
- day53python打卡
qq_58459892
py打开学习pytorch人工智能算法深度学习python
知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象ps;如果你学有余力,对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。一、G
- 大模型在急性弥漫性腹膜炎预测及治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究大数据人工智能
目录一、引言1.1研究背景与意义1.2研究目的与方法二、急性弥漫性腹膜炎概述2.1定义与分类2.2病因与发病机制2.3临床表现与诊断方法三、大模型在急性弥漫性腹膜炎预测中的应用3.1大模型介绍3.2数据收集与处理3.3模型训练与优化四、术前风险预测与准备方案4.1大模型预测术前风险4.2术前检查与评估4.3术前准备措施五、术中风险预测与手术方案制定5.1大模型预测术中风险5.2手术方案制定原则5.
- 大模型在胃十二指肠溃疡预测及治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能算法
目录一、引言1.1研究背景与意义1.2国内外研究现状1.3研究目的与方法二、胃十二指肠溃疡概述2.1疾病定义与分类2.2流行病学特征2.3病因与发病机制2.4临床表现与诊断方法三、大模型技术原理与应用现状3.1大模型基本概念与架构3.2在医疗领域的应用案例3.3用于胃十二指肠溃疡预测的可行性分析四、大模型预测胃十二指肠溃疡的方法与模型构建4.1数据收集与预处理4.2模型选择与训练4.3模型评估指标
- 【透视国家的三维棱镜:技术、制度与文化的解构与重构】
透视国家的三维棱镜:技术、制度与文化的解构与重构一、技术层:文明的物质显影剂技术作为生存密码青铜器冶炼技术将部落联盟升级为商周王朝,蒸汽机将农耕文明扭转为工业文明,半导体技术正在重塑21世纪权力版图。技术是文明存续的硬通货,其迭代速度直接决定国家在时空坐标系中的位置。量化指标:研发投入占GDP比重、专利数量、高精尖产业占比隐性成本:技术依赖症(如荷兰病)、创造性破坏带来的社会撕裂技术悖论的双刃性核
- python打卡day53@浙大疏锦行
风逸hhh
python打卡60天行动python开发语言
知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象ps;如果你学有余力,对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。一、数
- 打卡Day53
月宝好q
python60天打卡深度学习人工智能python
知识点:1.对抗生成网络的思想:关注损失从何而来2.生成器、判别器3.nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法4.leakyReLU介绍:避免relu的神经元失活现象ps:如果你学有余力,对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数
- DAY 53 对抗生成网络
MasterLLL0228
Python入门(坚持)人工智能
知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象ps;如果你学有余力,对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。imp
- 推荐标注数据标注
万能小贤哥
人工智能算法
数据标注一、病害类型角度(精准分类)如果要区分具体病害,先判断病斑特征:若病斑是柑橘溃疡病(病斑通常呈火山口状开裂,初期黄色晕圈),标签可设为citrus_canker。若像是柑橘炭疽病(病斑多为圆形、褐色至黑色),标签设为citrus_melanose。二、简易分类角度(快速区分)要是先做简单的“病害/健康”二分类,标签设为diseased_citrus(代表带病柑橘),后续再细化也可。三、结合
- 软件许可成本控制策略:解码企业降本增效的“数字杠杆”
格发gofar
网络机器学习开发语言大数据汽车
在苏州工业园区某精密制造企业的数字化转型研讨会上,CFO王总展示的一组数据引发深思:过去三年间,企业CAD/CAM软件许可采购成本年均增长28%,而设计部门实际使用率却始终徘徊在62%。这个看似矛盾的数字,折射出中国企业在软件资产管理中普遍面临的“成本困局”。当全球软件市场以每年12%的速度扩张,如何破解“买多浪费、买少误事”的魔咒,成为决策者必须破解的时代命题。诊断:软件成本失控的“三大病灶”病
- python打卡day31
今日的示例代码包含2个部分1.notebook文件夹内的ipynb文件,介绍下今天的思路2.项目文件夹中其他部分:拆分后的信贷项目,学习下如何拆分的,未来你看到的很多大项目都是类似的拆分方法知识点回顾1.规范的文件命名2.规范的文件夹管理3.机器学习项目的拆分4.编码格式和类型注解作业:尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。@疏锦行
- Python打卡第53天
猛犸MAMMOTH
Python打卡60天python深度学习开发语言
@浙大疏锦行作业:对于心脏病数据集,对于病人这个不平衡的样本用GAN来学习并生成病人样本,观察不用GAN和用GAN的F1分数差异。importpandasaspdimportnumpyasnpimporttorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.preprocessingimportMinMaxScalerfromskle
- 多标签分类的激活函数和损失函数
通过幸福的路唯有奋斗
深度学习
刚入门DeepLearning不久,前一段时间一直在学习cifar10的分类,突然最近要做一个多标签的任务,突然有点不知所措,不知从何下手了。于是查阅了一些资料,了解一下多分类任务与多标签分类任务的异同。-多分类任务:只有一个标签,但是标签有多种类别。-多标签分类任务:一条数据可能有一个或者多个标签,比如一个病人的眼底检测报告,它可能被标记患有糖尿病、高血压多个标签。多标签分类任务的特点:1.类别
- 10、 动态学习调度算法与多层感知器模型用于心脏病预测系统
丛越
动态学习调度算法DLSA多层感知器
动态学习调度算法与多层感知器模型用于心脏病预测系统1.引言心脏病是全球公共卫生的重大挑战,每年导致数百万人死亡。为了应对这一问题,研究人员一直在寻找更有效的预测方法,以实现早期检测和预防。数据挖掘和机器学习技术为心脏病预测提供了新的可能性。通过利用大规模和多样化的数据集,研究人员可以开发出更加准确和可靠的预测模型。本文将详细介绍动态学习调度算法(DynamicLearningSchedulingA
- 肩胛骨髓外浸润
qq_25467441
网络
已经决定给妈妈做移植了,突然检查出肩胛骨髓外浸润,心好累~~【白血病吧】_百度贴吧妈妈髓系m2,2疗缓解,现在第五疗刚刚结束,2周前去北人提交了配型报告排仓,准备做移植。第四疗的时候肩膀和附近弥漫性疼痛,以为是肩周炎没有太在意,现在距离开始疼痛1个月了,前两天做了磁共振,显示肩胛骨附近有团块状组织阴影,推测为髓外浸润形成的肿瘤~~~问了当地的大夫,说如果确诊为髓外浸润,那移植就不建议我们去做了,因
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs