TidyTuesday 可视化学习之 网络图( igraph 和 ggraph) 绘制

首先我是这是我日常逛 twitter 看到的,然后我又是一个搬运工( emmm,这个系列都没有询问作者意见,后面如果有意外就删了。

TidyTuesday 可视化学习之 网络图( igraph 和 ggraph) 绘制_第1张图片

emmm, 后面要好好学习一下 igraph 和 ggraph 的骚操作,虽然图出来了,但是可视化那部分我暂时还是没看懂。所以这里就只是学习了数据清洗操作。我的妈诶,再次强烈推荐 《 R for data science 》,你看这里面哪一个操作是脱离这本书的函数操作。

  • 书籍在线版:R for Data Science
  • 习题链接:R for Data Science: Exercise Solutions
    TidyTuesday 可视化学习之 网络图( igraph 和 ggraph) 绘制_第2张图片

参考链接:

https://github.com/spren9er/tidytuesday/blob/master/tidytuesday_201946_cran_packages.r

knitr::opts_chunk$set(echo = TRUE)

加载包

library(tidyverse)
library(igraph)
library(ggraph)

读取数据

## 数据存放的网页链接
path <-
  paste0(
    'https://raw.githubusercontent.com/rfordatascience/tidytuesday/',
    'master/data/2019/2019-11-12/'
  )

## 读取在线数据,这时候 `path` 就相当于本地的路径;我们也可以下载到本地然后读取
data <- read_csv(paste0(path, 'loc_cran_packages.csv'))

## data 数据类型
# Parsed with column specification:
# cols(
#   file = col_double(),
#   language = col_character(),
#   blank = col_double(),
#   comment = col_double(),
#   code = col_double(),
#   pkg_name = col_character(),
#   version = col_character()
# )


head(data)
# A tibble: 6 x 7
   file language blank comment  code pkg_name version
                  
1     2 R           96     353   365 A3       1.0.0  
2     1 HTML       347       5  2661 aaSEA    1.0.0  
3    23 R           63     325   676 aaSEA    1.0.0  
4     3 HTML       307       9  1275 abbyyR   0.5.5  
5    30 R          224     636   587 abbyyR   0.5.5  
6     5 Markdown   246       0   418 abbyyR   0.5.5 

数据清洗

  • Tiobe index 链接
    TidyTuesday 可视化学习之 网络图( igraph 和 ggraph) 绘制_第3张图片
# popular programming languages from Tiobe Index (Nov. 2019)
# Tiobe index 中 2019 年 十一 月为止流行的编程语言
popular_languages <- c(
  'Java', 'C', 'Python', 'C++', 'C#', 'Visual Basic', 'JavaScript', 'PHP', 'SQL', 'Ruby', 'Objective C++', 'Assembly', 'R'
)

number_of_pkgs <- 300

# 给每种编程语言定义对应的颜色
top_language_colors <- list(
  'Assembly'   = '#efb306',
  'C'          = '#eb990c',
  'C++'        = '#e8351e',
  'JavaScript' = '#852f88',
  'Java'       = '#cd023d',
  'R'          = '#7db954',
  'Python'     = '#0f8096',
  'Ruby'       = '#4e54ac',
  'SQL'        = '#17a769',
  'All'        = '#000000'
)
# list 转变为向量
colors <- as.vector(unlist(top_language_colors))
levels <- names(top_language_colors)
  • 通过结合函数 filter()group_by()summarize()arrange()select()mutate()等函数结合使用处理数据
top_packages <- data %>%
  filter(language %in% popular_languages) %>% # 从数据中筛选出主流的编程语言,即上面 popular_languages 中涉及的。
  group_by(pkg_name) %>% # 按照每种语言中的包进行分组
  summarize(total_code = sum(code)) %>% # 然后求和
  arrange(desc(total_code)) %>% # 按照上面的得到的 total_code 结果进行降序排列
  head(number_of_pkgs) %>% # 输出前三百个包
  select(pkg_name, total_code) # 选择 pkg_name 和 total_code 两列

top_languages_per_pkg <- data %>%
  filter(
    pkg_name %in% top_packages$pkg_name, # 筛选 data 中由上一步得到的含有前三百个包的信息
    language %in% popular_languages 
  ) %>%
  left_join(top_packages, by = 'pkg_name') %>% # 此函数表示合并两个表格,输出两者共有的包的行,即将 total_code 信息列加入
  mutate(language = factor(language, levels = levels)) %>% # 将 language 列变为因子,并且通过 level 指定因子排列顺序
  arrange(language, pkg_name) # 按照 language 和 pkg_name 列进行排序, 先前者再后者

top_languages <- top_languages_per_pkg %>%
  group_by(language) %>% # 按照计算机语言 language 进行分组
  summarize(total_code = sum(code)) %>% # 统计每一种语言所有的 code 之和
  arrange(language) %>% # 按照 language 列进行排序
  ungroup() # 取消分组
vertices1 <- edges1 %>%
  group_by(to) %>% # 按照 to 列即包名进行分组
  top_n(1, total_code) %>% # 筛选每个包 total_code 最大的语言
  ungroup() %>% # 取消分组
  transmute(to, label = to, code = total_code, color = from) %>% # 创建数据列,将计算机语言作为颜色
  left_join(
    count(edges1, to, wt = total_code, name = 'total_code'), by = 'to' 
  ) %>% # count() 函数计算 edges1 中每一个包名的在所有计算机语言中的 total_code 之和
  rename(node = to) %>%
  mutate(level = 1, color = factor(color, levels = levels)) %>%
  arrange(color, node)

edges1 <- left_join(
  edges1,
  edges1 %>%
    left_join(vertices1, by = c('to' = 'node', 'from' = 'color')) %>%
    transmute(from, to, alpha = level) %>%
    replace_na(list(alpha = 0))
)

edges <- bind_rows(edges1, edges2)

vertices2 <- edges2 %>%
  transmute(
    node = to, label = to, code = total_code, color = to, total_code, level = 2
  ) %>%
  arrange(node)

vertices3 = tibble(
  node = 'All', label = '', code = 0, color = NA, total_code = 0, level = 3
)

vertices = bind_rows(vertices1, vertices2, vertices3) %>%
  mutate(radius = total_code**(1.8))

绘图

ggraph(layout, circular = TRUE) +
  geom_edge_diagonal(
    aes(edge_color = node1.color, edge_alpha = as.factor(alpha)),
    edge_width = 0.3, show.legend = FALSE
  ) +
  geom_node_point(
    aes(size = radius, color = color),
    alpha = 0.6, show.legend = FALSE
  ) +
  geom_node_text(
    aes(
      x = 1.0175 * x,
      y = 1.0175 * y,
      label = label,
      angle = -((-node_angle(x, y) + 90) %% 180) + 90,
      filter = !(label %in% top_languages$language)
    ),
    size = 2, hjust = 'outward', family = 'Oswald'
  ) +
  geom_node_text(
    aes(
      x = x,
      y = y,
      label = label,
      filter = label %in% top_languages$language
    ),
    size = 6, hjust = 0.5, family = 'Oswald',
    point.padding = NA, repel = TRUE
  ) +
  geom_node_text(
    aes(
      x = x,
      y = y - 0.045,
      label = ifelse(
        total_code > 1000,
        format(total_code, big.mark = ','),
        total_code
      ),
      filter = label %in% top_languages$language
    ),
    size = 3, hjust = 0.5, family = 'Oswald',
    point.padding = NA, repel = TRUE
  ) +
  scale_edge_color_manual(values = colors, guide = FALSE) +
  scale_color_manual(values = colors, guide = FALSE) +
  scale_size_area(max_size = 150, guide = FALSE) +
  scale_edge_alpha_manual(values = c(0.15, 1), guide = FALSE) +
  coord_fixed() +
  labs(
    title = 'LOC of Popular Programming Languages in 300 CRAN Packages',
    subtitle = 'considered are largest CRAN packages written in one (or more) of top 16 programming languages from Tiobe Index (Nov. 2019)',
    caption = '#tidytuesday 46|2019 spren9er'
  ) +
  theme_void() +
  theme(
    text = element_text(family = 'Oswald'),
    legend.position = c(0.645, 0.51),
    plot.title = element_text(
      face = 'bold', hjust = 0.5, size = 20, margin = margin(t = 45, b = 3)
    ),
    plot.subtitle = element_text(
      face = 'plain', hjust = 0.5, size = 13, margin = margin(t = 5, b = 3)),
    plot.caption = element_text(
      face = 'plain', color = '#dedede', size = 8, hjust = 1,
      margin = margin(b = 20)
    )
  )

# 保存到本地
ggsave(
  'E://swrj/R3.6/Tidytuesday/tidytuesday_201946_cran_packages.png',
  width = 12, height = 12.5, dpi = 300
)
  • 出图效果


    TidyTuesday 可视化学习之 网络图( igraph 和 ggraph) 绘制_第4张图片

你可能感兴趣的:(TidyTuesday 可视化学习之 网络图( igraph 和 ggraph) 绘制)