- SelectDB 实时分析性能突出,宝舵成本锐减与性能显著提升的双赢之旅
SelectDB技术团队
大数据物联网dorisselectdb人工智能电商场景数据分析
BOCDOP宝舵早期基于TiDB构建实时数仓,随着数据量增长,在数据处理效率、OLAP能力扩展、功能支持、成本与资源方面存在一定优化空间。为提升数据分析能力并优化成本,宝舵引入SelectDB,达成写入速度提升10倍,成本直降30%的显著成效。本文转录自高瑞军(宝尊科技高级架构师)在DorisSummitAsia2024上的演讲,经编辑整理。业务背景宝尊集团创立于2007年,是中国品牌电商服务行业
- Apache Doris整合Iceberg + Flink CDC构建实时湖仓体的联邦查询分析架构
MfvShell
apacheflink架构Flink
随着大数据技术的迅猛发展,构建实时湖仓体并进行联邦查询分析成为了许多企业的迫切需求。在这篇文章中,我们将探讨如何利用ApacheDoris整合Iceberg和FlinkCDC来构建这样一个架构,并提供相应的源代码示例。简介实时湖仓体是一种灵活、可扩展的数据架构,结合了数据湖和数据仓库的优势。ApacheDoris是一款开源的分布式SQL引擎,专注于实时分析和查询。Iceberg是一种开放式表格格式
- 【python】图形用户界面和游戏开发
usp1994
pythonuiide
图形用户界面和游戏开发文章目录图形用户界面和游戏开发基于tkinter模块的GUI使用Pygame进行游戏开发制作游戏窗口在窗口中绘图加载图像实现动画效果碰撞检测事件处理基于tkinter模块的GUIGUI是图形用户界面的缩写,图形化的用户界面对使用过计算机的人来说应该都不陌生,在此也无需进行赘述。Python默认的GUI开发模块是tkinter(在Python3以前的版本中名为Tkinter),
- 【Apache Storm】
茉菇
apachestorm大数据
一、Storm简介1、概述官网地址:https://storm.apache.org/index.htmlApacheStorm是一个开源的、分布式的实时计算系统,专为处理流式数据而设计。它能够处理大量数据流并在极低的延迟下提供实时的结果。相比于传统的批处理系统,Storm具有处理无限数据流的能力,支持非常高的可扩展性和容错机制。Storm可以适用于多种编程语言,具有高度的灵活性。2、核心功能分布
- Python 爬虫实战:如何爬取小红书数据并进行分析
Python爬虫项目
python爬虫开发语言selenium测试工具
一、引言随着社交电商的崛起,小红书(Xiaohongshu)作为一款结合了社交和电商的应用,吸引了大量年轻用户。用户在平台上分享购物心得、生活经验以及个性化的消费推荐内容,形成了庞大的用户数据与内容生态。因此,如何从小红书获取数据进行分析,成为了数据科学、市场营销和社交媒体研究中的一个重要课题。本文将介绍如何使用Python编写爬虫爬取小红书的数据,分析如何通过小红书的开放API获取用户信息、帖子
- DRAM refresh里面的tRFC tREFI tREF之间是什么关系
DRAM视界
DRAM从旁听到入门笔记微信经验分享微信公众平台百度
欢迎大家关注微信公众号:DRAM视界也欢迎大家订阅本专栏。本专栏会持续不断的分享DRAM相关的经验**学DRAM的痛苦之一,是DRAM里面的timing太多了,各种各样的timing五花八门,奇形怪状,不知所云。**Refresh操作里面也有很多对timing的要求,ACT要求tRCD/tFAW,PRE要求tRP,tRTP等。REF要求tRFC/tREFI/tREF等等。那tRFCvstREFIv
- linux基础命令top,Linux 入门命令TOP 10
慧人小圣
原标题:Linux入门命令TOP10作为一只接触Linux不久的小菜鸟,今天厚着脸皮给大家分享一些常用的Linux入门的命令。在Linux“漆黑”的系统中“溜达”之前,先看下“地图”,也就是先了解一下Linux的目录(Directory,可视作“文件夹”)结构。在操作Linux系统中,一切都是文件,而目录是Linux系统组织文件的一种特殊文件。根目录由“/”来表示,可理解为windows系统的“我
- python ansys workbench联动_【干货】如何在ANSYS WORKBENCH中关联几何模型和有限元模型...
weixin_39644377
pythonansysworkbench联动
原标题:【干货】如何在ANSYSWORKBENCH中关联几何模型和有限元模型我们都知道,通过诸如HPERMESH这样的有限元网格划分软件得到的模型,在传入ANSYS以后,只包含节点和单元信息。但是当我们在WB中使用模型操作时,有时候需要选择几何特征,如在圆孔面上施加圆柱支撑,而此时对象只有单元节点信息,并无体面线的几何信息,该怎么办呢?显然,处理此问题的有效途径,在于把有限元模型与该有限元模型对应
- 信创系统安全优化与持续改进策略有哪些?
weixin_37579147
系统安全安全
信创系统(信息技术应用创新系统)的安全优化与持续改进是保障国产化技术生态安全可靠运行的关键。以下从技术、管理、组织等多个维度提出系统性策略,并结合实际场景展开说明:一、技术层面的安全优化策略1.核心组件安全加固国产化组件漏洞管理:建立针对国产操作系统(如统信UOS、麒麟)、数据库(达梦、OceanBase)的漏洞扫描与修复机制,联合厂商建立漏洞情报共享平台。硬件层可信计算:采用基于国产芯片(如鲲鹏
- python ansys workbench联动_如何在ANSYS WORKBENCH中关联几何模型和有限元模型
YUNYA麻麻
pythonansysworkbench联动
我们都知道,通过诸如HPERMESH这样的有限元网格划分软件得到的模型,在传入ANSYS以后,只包含节点和单元信息。但是当我们在WB中使用模型操作时,有时候需要选择几何特征,如在圆孔面上施加圆柱支撑,而此时对象只有单元节点信息,并无体面线的几何信息,该怎么办呢?显然,处理此问题的有效途径,在于把有限元模型与该有限元模型对应的几何模型进行关联,再一起导入到MECHANICAL中进行分析,则既能够既享
- 【商城实战(43)】探秘知名商城架构:解锁电商成功密码
奔跑吧邓邓子
商城实战架构微服务springboot商城实战商城架构
【商城实战】专栏重磅来袭!这是一份专为开发者与电商从业者打造的超详细指南。从项目基础搭建,运用uniapp、ElementPlus、SpringBoot搭建商城框架,到用户、商品、订单等核心模块开发,再到性能优化、安全加固、多端适配,乃至运营推广策略,102章内容层层递进。无论是想深入钻研技术细节,还是探寻商城运营之道,本专栏都能提供从0到1的系统讲解,助力你打造独具竞争力的电商平台,开启电商实战
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- Pandas完全指南:数据处理与分析从入门到实战
xiaoyu❅
pythonpythonpandas开发语言
目录引言一、Pandas环境配置与核心概念1.1安装Pandas1.2导入惯例1.3核心数据结构二、数据结构详解2.1Series创建与操作2.2DataFrame创建三、数据查看与基本操作3.1数据预览3.2索引与选择3.3数据排序四、数据清洗实战4.1处理缺失值4.2处理重复值4.3数据类型转换4.4字符串处理五、数据处理进阶5.1数据筛选5.2列操作5.3应用函数六、数据分组与聚合6.1基础
- 【前端】面试八股文——输入URL到页面展示的过程
帅比九日
面试八股文前端面试javascript
【前端】面试八股文——输入URL到页面展示的过程1.DNS解析当用户在浏览器中输入URL并按下回车时,首先需要将域名转换为IP地址,这个过程称为DNS(域名系统)解析。具体步骤如下:浏览器缓存:浏览器首先检查自身缓存中是否有该域名的IP地址。操作系统缓存:如果浏览器缓存中没有找到,浏览器会向操作系统请求DNS信息。路由器缓存:如果操作系统缓存也没有找到,操作系统会向本地网络中的路由器请求DNS信息
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- 信息收集综合
只不过是胆小鬼罢了
信息收集phpweb安全安全
1《应用服务器资产分析与角色定性详解》在网络安全领域,对应用服务器的资产分析与角色定性是至关重要的工作。通过对服务器的操作系统、IP资产、端口资产等方面进行详细分析,可以更好地了解服务器的特性与用途,从而为网络安全防护提供有力支持。本文将从多个维度深入探讨应用服务器的资产分析与角色定性方法。一、操作系统分析1.Web大小写敏感性在分析应用服务器的操作系统时,Web大小写敏感性是一个重要的参考因素。
- 【FPGA教程案例31】通信案例1——基于FPGA的ASK调制信号产生
fpga和matlab
★教程2:fpga入门100例fpga开发FPGA教程ASK调制verilog
FPGA教程目录MATLAB教程目录---------------------------------------------------------------------------------------目录1.软件版本2.ASK调制原理3.ASK调制过程的FPGA实现4.操作步骤与仿真结论5.参考文献1.软件版本vivado2019.22.ASK调制原理幅度键控(Amplitude-Shi
- Centos离线安装gcc
为什么要做囚徒
linux运维linuxcentoslinux运维
文章目录Centos离线安装gcc1.gcc是什么?2.gcc下载地址3.gcc的安装4.安装结果验证Centos离线安装gcc1.gcc是什么?GCC(GNUCompilerCollection)是GNU项目下的开源编译器套件,主要用于将C、C++等编程语言的源代码编译成可执行程序或库2.gcc下载地址gcc整体打包下载地址CentOS-7所有rpm包的仓库地址:bzip2-devel-1.0.
- 【算法学习之路】12.DFS
零零时
算法学习之路深度优先算法学习c++开发语言数据结构全排列
DFS前言一.DFS简介二.思路三.缺点四.三种类型五.题目1.2前言我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,题单正在更新,其他的也会陆陆续续的更新,希望大家点赞收藏我会尽快更新的!!!一.DFS简介1.深度优先搜索,是一种用于遍历或搜索树或图的算法。所谓深度优先,就是说每次搜尝试向更深的节点走。2.在搜索算法中,该DFS常常
- 自己总结的谷歌黑客语法,非常好用(野战必备)
网络安全指导员
网络安全黑客程序员web安全安全网络学习php
常用:site:gov.cninurl:.login.asp(z政府网站后台)inurl:gov.cn/admin(百度就可以)inurl:gitlab公司filetype:txtinurl:gitlab公司intext:账号site:*.gitee.comintext:账号(ftp://*:*密码地址)site:*.gitee.comfiletype:txt账号(ftp://*:*密码地址)si
- Tsfresh + TA-Lib + LightGBM :A 股市场量化投资策略实战入门
船长@Quant
Python金融科技pythontsfreshTA-LibLightGBM量化技术策略开发
Tsfresh+TA-Lib+LightGBM:A股市场量化投资策略实战入门本项目以A股市场为研究对象,通过量化技术对市场数据进行分析,构建量化投资策略,并利用历史数据回测验证策略的有效性。项目旨在为量化技术初学者提供一个系统的学习框架,帮助读者掌握从数据获取到策略评估的全流程操作。文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量化新手建立系统认
- 从零实现B站视频下载器:Python自动化实战教程
木觞清
#编程语言自动化运维
一、项目背景与实现原理1.1B站视频分发机制Bilibili的视频采用音视频分离技术,通过以下方式提升用户体验:动态码率适配(1080P/4K/HDR)分段加载技术(基于M4S格式)内容保护机制(防盗链/签名验证)1.2技术实现路线graphTDA[模拟浏览器请求]-->B[获取加密播放信息]B-->C[解析音视频地址]C-->D[多线程下载]D-->E[FFmpeg合并]二、代码逐层解析2.1请
- java for循环内执行多线程
m0_74823434
面试学习路线阿里巴巴资料职业发展javapython开发语言后端
目录一、java用多线程来加快循环效率(推荐第3种!!!!)?第一种:线程池搭配闭锁?第二种:分页概念执行线程?第三种:分页概念执行线程进阶版!!!!一、java用多线程来加快循环效率(推荐第3种!!!!)第一种:线程池搭配闭锁涉及知识:Executors(线程池)、CountDownLatch(闭锁)优点:代码简洁,方便阅读,性能稳定;缺点:Executors创建的线程池是公用的,如果多个地方使
- This robot has a joint named “gripper_finger_joint“ which is not in the gazebo model.
无码不欢的我
ROS
在B站上看古月居的课《ROS机械臂开发:从入门到实战》,在运行第9节的代码时,出现如下报错:Thisrobothasajointnamed"gripper_finger_joint"whichisnotinthegazebomodel.本人所运行环境为:ubuntu版本:20.04ROS版本:noetic错误分析:xacro的宏调用格式错误,正确格式为或者为:...修改方法:1.找到probot_
- c++右值引用详解!
好好学习O(∩_∩)O
c++开发语言
前言左值引用可以参考笔者的这篇文章---从c到c++——4:引用-CSDN博客(ps:这篇文章里的引用单只左引用笔者当时水平不高(虽然现在也不高)起错了名字)左值引用与右值引用的定义c++中,无论是左值引用与右值引用,用途都是在给对象起别名左值与右值的概念左值和右值是c++中的一个概念,严格的来说,对于系统提供的=操作符来说(自己提供的重载函数不算),可以放在等号左边的或者能加const的称为左值
- 印度、马来股票K线接口与实时数据对接文档
金融数据出海
数据分析金融python3.11数据库
概述本文档旨在为开发者提供关于如何使用StockTVAPI获取特定股票或指数的K线数据(即OHLCV数据,包括开盘价、最高价、最低价、收盘价以及成交量),以及如何通过WebSocket(WS)获取实时市场数据的详细指南。通过本文档,您将了解到如何构造请求URL,解析返回的数据,以及一些实用的应用场景示例。K线接口说明请求方法GET请求URLhttps://api.stocktv.top/stock
- 【数据库】MySQL事务详解
此木|西贝
数据库数据库mysql
事务的隔离级别读未提交(read-uncommitted):最低级的隔离级别,允许其他事务读到未提交的值;读已提交(read-committed):事务只能读取到其他事务提交的数据;可重复读(repeatable-read):对同一条数据多次读取结果都是一样(mysql默认隔离级别);串行化(serializable):最高的隔离级别,所有事务穿行执行,事务间不会产生干扰隔离级别存在的问题读未提交
- AIGC时代品牌突围战:10招玩转DeepSeek内容推荐(深度扩展版)
白雪讲堂
人工智能大数据机器学习
一、认知革命:从SEO到GEO的生死迭代案例对比:传统SEO困境:某家电品牌2023年投入200万SEO优化,关键词排名TOP3但流量下降42%(SEMrush数据)GEO突破案例:某母婴品牌通过结构化数据改造,AI推荐量从日均300次飙升至1.2万次(来源:DeepSeek官方案例库)实战要点:内容形态改造:将产品参数表升级为JSON-LD格式(某手机品牌实现参数类问题100%引用)流量分配逻辑
- Java开发者必看!零成本集成DeepSeek-R1打造AI办公神器,源码级实战教程让你效率翻倍!
Leaton Lee
java人工智能开发语言
目录开篇互动一、为什么是DeepSeek-R1?它凭什么碾压传统AI工具?二、手把手部署DeepSeek-R1本地环境(附避坑指南)步骤1:Docker一键部署步骤2:下载模型步骤3:验证部署三、Java整合DeepSeek-R1:从理论到实战1.添加HTTP客户端依赖(以SpringBoot为例)2.封装AI工具类(核心代码解析)3.实战场景1:自动生成周报(附Prompt技巧)四、高阶玩法:A
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro