最小化服务端启动demo
这篇文章通过图文+视频的方式介绍Netty服务端启动流程,习惯看视频操作,体验敲代码快感的小伙伴可以直接翻到文末哦~
我们先来看一下最小化服务端启动demo,我们直接来上代码,然后逐个解释
NettyServer.java
public class NettyServer {
public static void main(String[] args) {
NioEventLoopGroup boosGroup = new NioEventLoopGroup();
NioEventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap serverBootstrap = new ServerBootstrap();
serverBootstrap
.group(boosGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.childHandler(new ChannelInitializer() {
protected void initChannel(NioSocketChannel ch) {
}
});
serverBootstrap.bind(8000);
}
}
- 首先看到,我们创建了两个
NioEventLoopGroup
,这两个对象可以看做是传统IO编程模型的两大线程组,boosGroup
表示监听端口,创建新连接的线程组,workerGroup
表示处理每一条连接的数据读写的线程组,不理解的同学可以看一下上一篇博文《跟闪电侠学Netty》开篇:Netty是什么?。用生活中的例子来讲就是,一个工厂要运作,必然要有一个老板负责从外面接活,然后有很多员工,负责具体干活,老板就是boosGroup
,员工们就是workerGroup
,boosGroup
接收完连接,扔给workerGroup
去处理。 - 接下来 我们创建了一个引导类
ServerBootstrap
,这个类将引导我们进行服务端的启动工作,直接new出来开搞。 - 我们通过
.group(boosGroup, workerGroup)
给引导类配置两大线程,这个引导类的线程模型也就定型了。 - 然后,我们指定我们服务端的IO模型为
NIO
,我们通过.channel(NioServerSocketChannel.class)
来指定IO模型,当然,这里也有其他的选择,如果你想指定IO模型为BIO,那么这里配置上OioServerSocketChannel.class
类型即可,当然通常我们也不会这么做,因为Netty的优势就在于NIO。 - 接着,我们调用
childHandler()
方法,给这个引导类创建一个ChannelInitializer
,这里主要就是定义后续每条连接的数据读写,业务处理逻辑,不理解没关系,在后面我们会详细分析。ChannelInitializer
这个类中,我们注意到有一个泛型参数NioSocketChannel
,这个类呢,就是Netty对NIO类型的连接的抽象,而我们前面NioServerSocketChannel
也是对NIO类型的连接的抽象,NioServerSocketChannel
和NioSocketChannel
的概念可以和BIO编程模型中的ServerSocket
以及Socket
两个概念对应上 - 我们的最小化参数配置到这里就完成了,我们总结一下就是,要启动一个Netty服务端,必须要指定三类属性,分别是线程模型、IO模型、连接读写处理逻辑,有了这三者,之后在调用
bind(8000)
,我们就可以在本地绑定一个8000端口启动起来,以上这段代码读者可以直接拷贝到你的IDE中运行。
自动绑定递增端口
在上面代码中我们绑定了8000端口,接下来我们实现一个稍微复杂一点的逻辑,我们指定一个起始端口号,比如1000,然后呢,我们从1000号端口往上找一个端口,直到这个端口能够绑定成功,比如1000端口不可用,我们就尝试绑定1001,然后1002,依次类推。
serverBootstrap.bind(8000);
这个方法呢,它是一个异步的方法,调用之后是立即返回的,他的返回值是一个ChannelFuture
,我们可以给这个ChannelFuture
添加一个监听器GenericFutureListener
,然后我们在GenericFutureListener
的operationComplete
方法里面,我们可以监听端口是否绑定成功,接下来是监测端口是否绑定成功的代码片段
serverBootstrap.bind(8000).addListener(new GenericFutureListener>() {
public void operationComplete(Future super Void> future) {
if (future.isSuccess()) {
System.out.println("端口绑定成功!");
} else {
System.err.println("端口绑定失败!");
}
}
});
我们接下来从1000端口号,开始往上找端口号,直到端口绑定成功,我们要做的就是在 if (future.isSuccess())
的else逻辑里面重新绑定一个递增的端口号,接下来,我们把这段绑定逻辑抽取出一个bind
方法
private static void bind(final ServerBootstrap serverBootstrap, final int port) {
serverBootstrap.bind(port).addListener(new GenericFutureListener>() {
public void operationComplete(Future super Void> future) {
if (future.isSuccess()) {
System.out.println("端口[" + port + "]绑定成功!");
} else {
System.err.println("端口[" + port + "]绑定失败!");
bind(serverBootstrap, port + 1);
}
}
});
}
然后呢,以上代码中最关键的就是在端口绑定失败之后,重新调用自身方法,并且把端口号加一,然后,在我们的主流程里面,我们就可以直接调用
bind(serverBootstrap, 1000)
读者可以自定修改代码,运行之后可以看到效果,最终会发现,端口成功绑定了在1024,从1000开始到1023,端口均绑定失败了,这是因为在我的MAC系统下,1023以下的端口号都是被系统保留了,需要ROOT权限才能绑定。
以上就是自动绑定递增端口的逻辑,接下来,我们来一起学习一下,服务端启动,我们的引导类ServerBootstrap
除了指定线程模型,IO模型,连接读写处理逻辑之外,他还可以干哪些事情?
服务端启动其他方法
handler() 方法
serverBootstrap.handler(new ChannelInitializer() {
protected void initChannel(NioServerSocketChannel ch) {
System.out.println("服务端启动中");
}
})
handler()
方法呢,可以和我们前面分析的childHandler()
方法对应起来,childHandler()
用于指定处理新连接数据的读写处理逻辑,handler()
用于指定在服务端启动过程中的一些逻辑,通常情况下呢,我们用不着这个方法。
attr() 方法
serverBootstrap.attr(AttributeKey.newInstance("serverName"), "nettyServer")
attr()
方法可以给服务端的channel,也就是NioServerSocketChannel
指定一些自定义属性,然后我们可以通过channel.attr()
取出这个属性,比如,上面的代码我们指定我们服务端channel的一个serverName
属性,属性值为nettyServer
,其实说白了就是给NioServerSocketChannel
维护一个map而已,通常情况下,我们也用不上这个方法。
那么,当然,除了可以给服务端channel NioServerSocketChannel
指定一些自定义属性之外,我们还可以给每一条连接指定自定义属性
childAttr() 方法
serverBootstrap.childAttr(AttributeKey.newInstance("clientKey"), "clientValue")
上面的childAttr
可以给每一条连接指定自定义属性,然后后续我们可以通过channel.attr()
取出该属性,详情请看视频演示
childOption() 方法
serverBootstrap
.childOption(ChannelOption.SO_KEEPALIVE, true)
.childOption(ChannelOption.TCP_NODELAY, true)
childOption()
可以给每条连接设置一些TCP底层相关的属性,比如上面,我们设置了三种TCP属性,其中
-
ChannelOption.SO_KEEPALIVE
表示是否开启TCP底层心跳机制,true为开启 -
ChannelOption.TCP_NODELAY
表示是否开始Nagle算法,true表示关闭,false表示开启,通俗地说,如果要求高实时性,有数据发送时就马上发送,就关闭,如果需要减少发送次数减少网络交互,就开启。
其他的参数这里就不一一讲解,有兴趣的同学可以去这个类里面自行研究。
option()
除了给每个连接设置这一系列属性之外,我们还可以给服务端channel设置一些属性,最常见的就是so_backlog,如下设置
serverBootstrap.option(ChannelOption.SO_BACKLOG, 1024)
表示系统用于临时存放已完成三次握手的请求的队列的最大长度,如果连接建立频繁,服务器处理创建新连接较慢,可以适当调大这个参数
总结
- 本文中,我们首先学习了Netty服务端启动的流程,一句话来说就是:创建一个引导类,然后给他指定线程模型,IO模型,连接读写处理逻辑,绑定端口之后,服务端就启动起来了。
- 然后,我们学习到bind方法是异步的,我们可以通过这个异步机制来实现端口递增绑定。
- 最后呢,我们讨论了Netty服务端启动额外的参数,主要包括给服务端channel或者channel设置属性值,设置底层TCP参数。
相信初学者跟着这篇文章敲打代码之后,能够独立地启动服务端,更多精彩,可以见视频。
如果,你觉得这个过程比较简单,想深入学习,了解服务端启动的底层原理,可以在imooc.com
上搜索netty
,找到我的源码分析视频,对应的第三章有对本节的最强原理解释。
如果你想系统地学Netty,我的小册《Netty 入门与实战:仿写微信 IM 即时通讯系统》可以帮助你
如果你想系统学习Netty原理,那么你一定不要错过我的Netty源码分析系列视频:Java 读源码之 Netty 深入剖析