无标题文章

"""

Created on Wed Nov 16 21:04:04 2016

@author: TanMingjun

"""

import matplotlib.pyplot as plt

import numpy as np

class billiard_circle():

def init(self,x_0,y_0,vx_0,vy_0,N,dt):

self.x_0 = x_0

self.y_0 = y_0

self.vx_0 = vx_0

self.vy_0 = vy_0

self.N = N

self.dt = dt

def motion_calculate(self):

self.x = []

self.y = []

self.vx = []

self.vy = []

self.t = [0]

self.x.append(self.x_0)

self.y.append(self.y_0)

self.vx.append(self.vx_0)

self.vy.append(self.vy_0)

for i in range(1,self.N):

self.x.append(self.x[i - 1] + self.vx[i - 1]*self.dt)

self.y.append(self.y[i - 1] + self.vy[i - 1]*self.dt)

self.vx.append(self.vx[i - 1])

self.vy.append(self.vy[i - 1])

if (np.sqrt( self.x[i]2+(self.y[i]-0.01)2 ) > 1.0) and self.y[i]>0.01:

self.x[i],self.y[i] = self.correct('np.sqrt(x2+(y-0.01)2) < 1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

self.vx[i],self.vy[i] = self.reflect1(self.x[i],self.y[i],self.vx[i - 1], self.vy[i - 1])

elif (np.sqrt( self.x[i]2+(self.y[i]+0.01)2 ) > 1.0) and self.y[i]<-0.01:

self.x[i],self.y[i] = self.correct('np.sqrt(x2+(y+0.01)2) < 1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

self.vx[i],self.vy[i] = self.reflect2(self.x[i],self.y[i],self.vx[i - 1], self.vy[i - 1])

elif (self.x[i] < -1.0) and self.y[i]>-0.01 and self.y[i]<0.01:

self.x[i],self.y[i] = self.correct('x>-1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

self.vx[i] = - self.vx[i]

elif (self.x[i] > 1.0) and self.y[i]>-0.01 and self.y[i]<0.01:

self.x[i],self.y[i] = self.correct('x<1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

self.vx[i] = - self.vx[i]

self.t.append(self.t[i - 1] + self.dt)

return self.x, self.y, self.t

def correct(self,condition,x,y,vx,vy):

vx_c = vx/100.0

vy_c = vy/100.0

while eval(condition):

x = x + vx_c*self.dt

y = y + vy_c*self.dt

return x-vx_cself.dt,y-vy_cself.dt

def reflect1(self,x,y,vx,vy):

module = np.sqrt(x2+(y-0.01)2) ### normalization

x = x/module

y = (y-0.01)/module+0.01

v = np.sqrt(vx2+vy2)

cos1 = (vxx+vy(y-0.01))/v

cos2 = (vx(y-0.01)-vyx)/v

vt = -v*cos1

vc = v*cos2

vx_n = vtx+vc(y-0.01)

vy_n = vt(y-0.01)-vcx

return vx_n,vy_n

def reflect2(self,x,y,vx,vy):

module = np.sqrt(x2+(y+0.01)2) ### normalization

x = x/module

y = (y+0.01)/module-0.01

v = np.sqrt(vx2+vy2)

cos1 = (vxx+vy(y+0.01))/v

cos2 = (vx(y+0.01)-vyx)/v

vt = -v*cos1

vc = v*cos2

vx_n = vtx+vc(y+0.01)

vy_n = vt(y+0.01)-vcx

return vx_n,vy_n

def plot(self):

plt.figure(figsize = (8,8))

plt.xlim(-1,1)

plt.ylim(-1,1)

plt.xlabel('x')

plt.ylabel('y')

plt.title('Stadium billiard $\alpha$=0.01')

self.plot_boundary()

plt.plot(self.x,self.y,'y')

#plt.savefig('chapter3_3.31.png',dpi = 144)

plt.show()

def plot_boundary(self):

theta = 0

x = []

y = []

while theta < np.pi:

x.append(np.cos(theta))

y.append(np.sin(theta)+0.01)

theta+= 0.01

plt.plot(x,y,'g.')

while theta > np.pi and theta< 2*np.pi:

x.append(np.cos(theta))

y.append(np.sin(theta)-0.01)

theta+= 0.01

plt.plot(x,y,'g.')

A1=billiard_circle(0,0,1,0.6,4000,0.01)

x1,y1,t1=A1.motion_calculate()

A2=billiard_circle(0.00001,0,1,0.6,4000,0.01)

x2,y2,t2=A2.motion_calculate()

delta=[]

for i in range(len(x1)):

x1[i]=np.sqrt((x1[i]-x2[i])2+(y1[i]-y2[i])2)

plt.semilogy(t1,x1)

plt.title('Stadium with $\alpha$=0.01 - divergence of two trajectories')

plt.xlabel('time')

plt.ylabel('separation')

你可能感兴趣的:(无标题文章)