- 霍夫变换(Hough Transform)算法原来详解和纯C++代码实现以及OpenCV中的使用示例
点云SLAM
算法图形图像处理算法opencv图像处理与计算机视觉算法直线提取检测目标检测霍夫变换算法
霍夫变换(HoughTransform)是一种经典的图像处理与计算机视觉算法,广泛用于检测图像中的几何形状,例如直线、圆、椭圆等。其核心思想是将图像空间中的“点”映射到参数空间中的“曲线”,从而将形状检测问题转化为参数空间中的峰值检测问题。一、霍夫变换基本思想输入:边缘图像(如经过Canny边缘检测)输出:一组满足几何模型的形状(如直线、圆)关键思想:图像空间中的一个点→参数空间中的一个曲线参数空
- 完整解读YashanDB数据库的架构与设计理念
数据库
在当今数据驱动的世界中,数据库技术的挑战愈发明显。扩展性不足、性能瓶颈、数据一致性和高可用性需求等问题,成为企业IT架构面临的重要考验。为了应对这些挑战,许多数据库系统采用了创新的设计理念和架构,以提供高效、稳健的解决方案。YashanDB作为一款现代数据库,凭借其完善的体系架构与设计思路,为用户提供了高效的数据存储与管理能力。本文旨在深入探讨YashanDB的体系架构及其设计理念,帮助技术人员和
- 广东省结构实体考试真题
ZShy0506
小草春天virtualenv
一、单选题1.基底标高不同时,应从低处砌起,并应由高处向低处搭砌。当设计无要求时,搭接长度不应小于()。A.0.5mmB.1.0mC.基础扩大部分的高度D.基础扩大部分的高度的2倍答案:C2.由测区的()值和()值通过测强曲线或强度换算表得到的测区现龄期混凝土强度值称为测区混凝土强度换算值。A.平均,最小B.平均,碳化深度C.最大,碳化深度
- nl2sql的解药pipe syntax
快乐的打字员
大数据人工智能数据库nl2sqlchatbi
NL2SQL的解药:PipeSyntax在数字化转型的浪潮中,数据已成为企业的核心资产,但传统SQL查询语言的学习曲线和复杂性却成为了业务人员与数据之间的无形屏障。NL2SQL(NaturalLanguagetoSQL)技术旨在打破这一隔阂,让用户通过自然语言直接获取数据洞察。然而,随着应用场景的复杂化,NL2SQL面临着自然语言的模糊性与SQL精确性之间的鸿沟,以及复杂查询生成的准确性与效率问题
- SpringBoot 与 HTMX:现代 Web 开发的高效组合
风象南
原创随笔后端springbootjava
在当今的Web开发领域,前后端分离已成为主流趋势。传统的全栈框架往往需要复杂的模板引擎来处理视图逻辑,而前端框架如React、Vue等虽然强大,但也带来了学习曲线陡峭、构建复杂等问题。本文将介绍一种轻量级的解决方案——结合SpringBoot与HTMX,实现高效、简洁的前后端分离开发。为什么选择SpringBoot与HTMX?SpringBoot是Java生态中最流行的应用开发框架之一,它提供了自
- 实操 SpringBoot+MCP!
清风孤客
springboot后端java人工智能
引言随着人工智能的飞速发展,大语言模型(LLM)正在革命性地重塑用户与软件的交互范式。想象一下这样的场景:用户无需钻研复杂的API文档或者在繁琐的表单间来回切换,只需通过自然语言直接与系统对话——“帮我查找所有2023年出版的图书”、“创建一个新用户叫张三,邮箱是
[email protected]”。这种直观、流畅的交互方式不仅能显著降低新用户的学习曲线,更能大幅削减B端系统的培训成本和实施
- 穿越SaaS迷雾:从工具到智能体,国内垂直SaaS的“阵痛”与“新生”
——在增长与亏损的悖论中,一场由AI驱动的“大洗牌”正悄然上演引言:每个SaaS创始人的“冰与火之歌”每个投身国内SaaS(软件即服务)创业的创始人,心中或许都吟唱着一首“冰与火之歌”。“火”的一面,是资本的热捧、数字化转型的时代浪潮,以及那条陡峭诱人的ARR(年度经常性收入)增长曲线。根据相关调研报告,2023年中国企业级SaaS市场规模已达888亿元,其中垂直行业SaaS的占比正从35%攀升至
- 爬虫-数据解析
打酱油的;
python自动化+爬虫爬虫
1.解析概述特性re(正则表达式)bs4(BeautifulSoup)xpath(lxml)pyquery本质文本模式匹配HTML/XML解析器(DOM树操作)XML路径语言(节点导航)jQuery式CSS选择器(封装lxml)学习曲线陡峭中等中等简单(熟悉jQuery/CSS)灵活性极高(处理任意文本)高(容错好,DOM操作)高(路径、轴、谓词)高(jQuery语法)可读性差(模式复杂时难懂)好
- 4篇2章5节:ANOVA 功效的单次精确模拟与可视化全解析
MD分析
用R探索医药数据科学r语言-4.2.1r语言功效曲线单次精确模拟分析
在医学研究尤其是糖尿病等干预性试验中,精准的实验设计与功效分析是确保研究价值的关键。R语言为重复测量方差分析(ANOVA)提供了强大工具,从实验设计构建、单次精确模拟分析,到功效曲线可视化,覆盖研究全流程。本文结合糖尿病胰岛素治疗试验案例,深度拆解函数的应用逻辑,手把手教你用数据驱动实验设计,让“样本量规划”“效应检测能力”从抽象概念变为可操作、可视化的研究支撑。一、相关函数的介绍在医学研究中,实
- 【C语言】学习过程教训与经验杂谈:思想准备、知识回顾(五)
个人主页:艾莉丝努力练剑❄专栏传送门:《C语言》、《数据结构与算法》、C语言刷题12天IO强训、LeetCode代码强化刷题学习方向:C/C++方向⭐️人生格言:为天地立心,为生民立命,为往圣继绝学,为万世开太平前言:我们在学习过程中会碰到很多很多问题,本系列文章不会博主不会额外再创建一个新的专栏来收录,因为这一系列文章创作的初心主要是针对回顾知识点(遵循遗忘曲线并且根据自身的实际情况可以做出一些
- 基于Matplotlib,在个人电脑上实现无代码、易于使用的绘图体验
wh3933
matplotlib信息可视化
在科学研究、商业分析和学术出版等领域,数据可视化是沟通洞见、展示成果的关键环节。强大的Python绘图库Matplotlib为此提供了无限可能,但其陡峭的学习曲线和对编程能力的硬性要求,将大量非程序员的领域专家拒之门外。这些专家——包括科学家、分析师、学者和学生——虽然在各自领域具备深厚的知识,却常常因不熟悉编程而难以高效地创建高质量、可定制的图表。他们目前或受限于Excel等功能有限的软件,或需
- 03 数据可视化的世界非常广阔,除了已提到的类型,还有许多更细分或前沿的可视化形式。
晨曦543210
信息可视化人工智能
十五、机器学习与数据科学专用图表特征重要性图(FeatureImportancePlot)用途:展示机器学习模型中各特征对预测结果的贡献度。示例:随机森林模型中影响房价预测的关键因素。混淆矩阵热力图(ConfusionMatrixHeatmap)用途:分类模型性能评估,显示预测结果与真实标签的对比。示例:疾病诊断模型的真阳性/假阳性分布。学习曲线(LearningCurve)用途:分析模型训练过程
- STM32的ADC校准过程
以下是STM32ADC校准的详细技术说明,包含实际操作步骤和注意事项:一、ADC校准的必要性误差来源分析:零点偏移误差(OffsetError):输入0V时输出不为0增益误差(GainError):满量程时的线性偏差非线性误差(DNL/INL):转换曲线的阶梯偏差温度漂移(典型值±2℃时±4LSB)校准目标:12位ADC的有效精度达到±1LSB减少芯片个体差异影响补偿供电电压波动带来的误差二、ST
- 从0开始学习R语言--Day41--Moran‘s I
Chef_Chen
学习
在处理带有空间特征的数据,我们往往都直接一股脑地处理数据点,但很多时候,空间上的信息对于处理后续衍生出来的问题会有很大帮助,例如对于城市里大小县城的发展情况,只知道单一县城的经济发展曲线,很难解释一些拐点和突然的攀升,而如果知道相邻县城存在经济发展飞快的例子,可能就是被带动了经济水平;亦或者是在处理社交网络的好有问题时,只知道谁和谁是朋友(类似于空间矩阵),是无法推断出经济收入相似的推论的,所以说
- UniApp的学习
xuzhihuan焕
uni-app学习
一.Vue.js基础基本概念:总之,Vue.js是一个简洁、灵活、高效的前端JavaScript框架,具有响应式数据绑定、组件化开发、虚拟DOM等特点,适用于构建各种类型的Web应用。Vue.js介绍:了解Vue.js的起源、特点以及基本概念。特点:简洁易用:Vue.js的API简洁明了,学习曲线较为平缓,使得开发者能够快速上手。响应式数据绑定:Vue.js提供了响应式的数据绑定机制,当数据发生变
- 创意 Python 爱心代码
在编程的世界里,我们不仅可以解决复杂的问题,还能用代码表达情感。今天,我们来分享几段有趣的Python代码,通过绘制爱心图案,展示Python的创意与技术魅力。1.使用Matplotlib画爱心importnumpyasnpimportmatplotlib.pyplotasplt#生成心形曲线的数据t=np.linspace(0,2*np.pi,1000)x=16*np.sin(t)**3y=13
- 双线性配对
牧天白衣.
论文点
双线性配对(BilinearPairing)是密码学中的一种重要数学工具,尤其在椭圆曲线密码学中应用广泛。以下从定义、性质、原理和应用等方面详细解释:1.基本定义双线性配对是一种映射关系,将两个群(通常是椭圆曲线上的加法群G1G_1G1和G2G_2G2)中的元素映射到第三个群(乘法群GTG_TGT)中,满足以下性质:•双线性性:对任意P,Q∈G1P,Q\inG_1P,Q∈G1和标量a,b∈Za,b
- 机器学习知识点复习 上(保研、复试、面试)百面机器学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
- 【机器学习笔记 Ⅱ】9 模型评估
巴伦是只猫
机器学习机器学习笔记人工智能
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。以下是系统化的评估方法,涵盖分类、回归、聚类等任务的评估指标和技术:一、分类模型评估1.基础指标2.高级指标ROC-AUC:通过绘制真正例率(TPR)vs假正例率(FPR)曲线下面积评估模型整体性能。AUC=1:完美分类;AUC=0.5:随机猜测。适用于二分类及多分类(OvR或OvO策略)。混淆矩阵:可视化模型在各类别上的具体错误(如将
- 单片机:实现国密SM2算法(附完整源码)
源代码大师
单片机实战教程单片机算法嵌入式硬件
单片机:实现国密SM2算法主要功能模块1.定义椭圆曲线参数2.大数运算(示例:大数比较)3.椭圆曲线点定义4.密钥生成5.加密与解密注意事项实现国密SM2算法在单片机上的完整源码涉及多个模块,包括椭圆曲线运算、SM3哈希函数、密钥生成、加密解密以及签名验证等。以下是一个基于C语言的简化版SM2实现示例,适用于资源有限的单片机环境。请注意,实际应用中可能需要根据具体单片机的性能和资源进行优化。主要功
- flutter动画
基础动画Animation:Flutter动画中的核心类,此类是抽象类,通常情况下使用其子类:AnimationController,可以获取当前动画的状态和值,也可以添加其状态变化监听和值变化监听。Curve:决定动画执行的曲线,和Android中的Interpolator(差值器)是一样的,负责控制动画变化的速率,系统已经封装了10多种动画曲线,详见Curves类。差值器AnimationCo
- android 音量调整
盼雨落,等风起
安卓audio音视频
1流程图2audio_policy_volumes.xml阐述了流跟device的音量范围【AndroidAudio】5、EngineBase加载音量曲线和策略【基于AndroidQ】1.按键处理1.1从输入子系统到音频子系统的处理按键会从inputReader的getEvent到inputDisptacher最后到ViewRootimpl中的ViewPostImeInputStage::proc
- 开源模型应用落地-OpenAI Agents SDK-集成Qwen3-8B-探索output_guardrail的创意应用(六)
开源技术探险家
开源模型-实际应用落地开源pythonai人工智能
一、前言随着人工智能技术的迅猛发展,大语言模型(LLM)在各行各业的应用日益广泛。然而,模型生成的内容是否安全、合规、符合用户预期,成为开发者和企业不可忽视的问题。为此,OutputGuardrail应运而生,作为一种关键的安全机制,它在模型生成结果之后进行内容审核与过滤,确保输出不偏离道德、法律和业务规范。通过检测不当的内容,不仅提升了AI系统的可信度,也为构建更加稳健和负责任的人工智能应用提供
- Logistic回归预测模型2:R语言实现模型的内部和外部验证
前面我们讲了logistic回归预测模型的建立,今天介绍的是模型的验证,可以在训练集和验证集中通过ROC曲线、校准曲线和决策曲线分别进行验证。1、原始数据原始数据分为训练集和验证集,其中训练集用于模型的构建和内部验证,验证集用于外部验证。两个数据集都包含5列,且列名相同。组别Group为因变量,1代表阳性结局,0代表阴性结局。自变量1和4为连续性变量,自变量2和3为二分类变量。2、安装所需要的R包
- 解读国密非对称加密算法SM2
云水木石
详解国密算法数据安全
本文先介绍非对称加密算法,然后聊一聊椭圆曲线密码算法(EllipticCurveCryptography,ECC),最后才是本文的主题国密非对称加密算法SM2。因为我的数学知识有限,对于算法涉及的一些复杂的理论知识,也是不懂,所以本文不会涉及理论,仅仅从编程的角度解读一下SM2。在进行国密算法开发的这段时间,我主要参考的书籍是《深入浅出HTTPS:从原理到实战》,微信读书上也有电子版,如果你也是进
- 零代码,搭出专属PLC监控大屏
不同行业PLC需监测的数据各异,ZWS-IoT低代码平台通过CATCOM-100网关接入PLC数据,快速搭建专属IoT监控页面。行业痛点:数据多样性与可视化瓶颈在工业自动化领域,不同行业对PLC监测的业务数据有着截然不同的需求,例如:能源行业的锅炉压力、温度曲线,到制造业的产线节拍、设备状态;环保领域的排放指标、能耗分析,每一项数据都需要精准采集与直观呈现。传统开发模式下,为每种场景定制Web监控
- 分享一款使用AI开发的免费的在线图表制作工具
图表工具免费ai开发
在线图表制作工具:轻松创建专业图表还在为复杂的数据可视化而烦恼吗?我们的在线图表制作工具(OnlineChartMaker)让您告别繁琐的软件安装和学习曲线,轻松创建专业、美观的图表。主要功能:直观的数据输入:简单几步即可导入或手动输入数据。丰富的图表类型:支持折线图、柱状图、饼图等多种常用图表,满足您的不同需求。实时预览:调整数据或样式时,即时查看图表效果。多语言支持:提供多种语言界面,方便全球
- 编程新手小白入门最佳攻略
闲暇部落
编程java新手入门开发语言
编程小白想要成为大神,并为大学新生的学习制定一份最佳入门攻略,可以遵循以下步骤:一、选择编程语言Python:被誉为最适合初学者的编程语言,语法简洁清晰,学习曲线平缓,广泛应用于数据分析、机器学习、Web开发、自动化脚本编写等领域。JavaScript:前端开发的核心语言,实现网页的动态效果,还能通过Node.js实现服务器端的编程,用于开发桌面应用和移动应用。Java:企业级开发中使用最广泛的语
- 【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(4)神经网络中的重要组件
第三章:神经网络原理详解与Pytorch入门第一部分:神经网络算法理论详解与实践第四节:神经网络中的重要组件内容:激活函数、loss函数、dropout、梯度消失与爆炸、过拟合与欠拟合神经网络的性能依赖于多个关键组件的合理设计与使用。理解这些组件有助于构建更加稳健且高效的模型。一、激活函数(ActivationFunction)【深度学习】关键技术-激活函数(ActivationFunctions
- 通过 CLI 和引入的方式使用 React:基础入门
山川湖海
Reactreact.js
使用React有两种使用方式,主要有以下几个原因:灵活性和适应性:引入的方式可以让开发者在现有的HTML页面中快速引入React,无需设置完整的项目环境。这适合小型或原型项目。CLI方式则更适合用于构建大型复杂的React应用程序,因为它提供了更完整的项目结构和构建工具支持。学习曲线:引入的方式相对简单,更容易上手。这对于React初学者来说是个不错的起点。CLI方式需要一些额外的工具和配置,但提
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt