- Python支持向量机(SVM)算法:面向对象的实现与案例详解
闲人编程
进阶算法案例支持向量机算法python深度学习数据分析
目录Python支持向量机(SVM)算法:面向对象的实现与案例详解引言一、支持向量机算法概述1.1支持向量机的基本思想1.2SVM的分类问题1.3SVM的优化目标二、面向对象的SVM实现2.1类的设计2.2Python代码实现2.3代码详解三、案例分析3.1案例一:鸢尾花分类问题描述数据准备模型训练与预测输出结果3.2案例二:手写数字识别问题描述数据准备模型训练与预测输出结果四、SVM的优化与核方
- 深度ResUnet与ResUnet++:新一代的语义分割神器
倪澄莹George
深度ResUnet与ResUnet++:新一代的语义分割神器去发现同类优质开源项目:https://gitcode.com/在这个数据驱动的时代,深度学习模型在图像处理领域展现出了强大的潜力,尤其是在语义分割任务中。今天,我们向您推荐一个基于PyTorch实现的开源项目——DeepResUnet和ResUnet++。这两个模型源自于学术界的最新研究,旨在提高图像分割的准确性和效率。项目介绍这个开源
- ASP.NET Core MVC
AAA猪饲料批发李师傅
.NETmvc.netcorec#
项目结构控制器由Controller类实现,视图一般是扩展名为cshtml的文件,而模型则是只有属性的普通C#类。控制器类的名字一般以Controller结尾,并且被放到Controllers文件夹下。控制器的名字为控制器的类名去掉Controller。视图一般被放到Views文件夹下的控制器名字的文件夹下。视图→浏览器端提交的请求→模型→控制器→处理→模型→视图。渲染:Render。案例演示一个
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- 深入解析LangChain框架:使用Python开发LLM应用的全生命周期指南
m0_57781768
langchainpython网络
深入解析LangChain框架:使用Python开发LLM应用的全生命周期指南前言在当前的人工智能浪潮中,大型语言模型(LLM)已成为众多应用的核心。LangChain是一个专为开发大型语言模型应用而设计的框架,它简化了LLM应用的整个生命周期,包括开发、生产化和部署。本文将详细介绍LangChain框架的各个方面,涵盖其核心组件、第三方集成、开发教程、API参考等,并通过实际案例展示如何使用La
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 【学习笔记】昇思25天学习打卡(D14)CV05-SSD目标检测.ipynb
UnseenMe
昇思学习笔记目标检测
SSD目标检测模型简介SSD,全称SingleShotMultiBoxDetector,是WeiLiu在ECCV2016上提出的一种目标检测算法。使用NvidiaTitanX在VOC2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(meanAveragePrecision)以及59FPS;对于512x512的网络,达到了76.9%mAP,超越当时最强的FasterRC
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 探秘数据仓库新势力:网络建模
秉寒
数据仓库
引言在数据如洪流般奔涌的时代,数据仓库作为企业数据管理和分析的核心枢纽,其建模技术也在不断革新。传统的数据仓库建模方式,如星型模型、雪花模型,曾为企业的数据组织和分析立下汗马功劳,但随着业务的日益复杂和数据关系的千变万化,它们逐渐显露出一定的局限性。而网络建模作为数据仓库领域的新名词,正以其独特的魅力和强大的功能,成为数据仓库技术发展的新方向。网络建模:打破传统的枷锁传统建模的局限传统的数据仓库建
- MongoDB成为最好NoSQL数据库的原因是什么?思维导图 代码示例(java 架构)
用心去追梦
mongodbnosqljava
MongoDB成为最受欢迎的NoSQL数据库之一,有多个因素促成了其成功和广泛采用。以下是从不同角度分析MongoDB成为最好NoSQL数据库的原因:MongoDB成为最好NoSQL数据库的原因文档型数据模型灵活模式:支持动态模式,无需预定义固定的表结构,易于适应快速变化的需求。嵌套结构:允许复杂的数据类型如数组、嵌入式文档,简化了数据建模。高性能与可扩展性读写性能:通过索引优化、内存映射文件等技
- 科技快讯 | 2025商业新愿景;豆包大模型1.5 Pro正式发布;ChatGPT每月产生260吨二氧化碳
最新科技快讯
科技
巨头扎堆入局,人形机器人量产渐行渐近2025年,人形机器人赛道热度持续升温,工信部《人形机器人创新发展指导意见》指出,2025年人形机器人创新体系初步建立,整机产品实现批量生产,并在多个场景应用。受访人士认为,人形机器人发展类似于智能手机初期,未来将逐步成熟迭代。专家预计,理想人形机器人可能需十年以上时间才能实现。信息来源:证券时报。特朗普考虑让这两人收购TikTok,除了马斯克还有他美国总统特朗
- 训练入口+保存模型
如若123
深度学习python人工智能
importargparsefromtorch.utils.dataimportDataLoaderfromtesting.testingimport*frommodels.model_coupled_v1importUnetfromdata.data_loadimport*importglobfromcollectionsimportOrderedDictdevice="cuda:0"iftor
- 智能推理的革命:DeepSeek-R1 深度解析其算法与实现
步子哥
算法人工智能
在人工智能(AI)领域,语言模型(LargeLanguageModels,LLMs)正以惊人的速度发展,变得越来越智能,能够理解和生成复杂的语言内容。然而,尽管现有的模型在许多任务上表现出色,它们在深度推理和逻辑思维方面仍有显著的提升空间。DeepSeek-R1的出现,正是为了解决这一问题,通过强化学习(ReinforcementLearning,RL)赋予语言模型更强大的推理能力,开创了LLMs
- 《从传统到智能:大模型交换机的变革之路》
烁月_o9
数据库服务器运维web安全安全
大模型交换机是一种专门为大规模人工智能模型提供网络和计算资源调度的硬件设备。以下是关于它的详细介绍:特点高带宽和低延迟:大模型的训练和推理通常需要处理大量的数据,高带宽可以确保数据在各个计算节点之间快速传输,低延迟则能减少数据传输过程中可能出现的瓶颈,提高训练和推理的效率。智能路由与数据调度:基于AI算法的调度机制,能够动态地调整数据传输路径,以应对不同网络条件和负载的变化,避免某些节点的拥塞,确
- 提取图片颜色信息转数据信息
~夕上林~
图像处理matlab
提取图片颜色信息转数据信息背景:给定原始图片如下,数据范围为0~2π\piπ,如何通过给定图片,提取出来对应的数据信息。目录提取图片颜色信息转数据信息分析颜色模型图像预处理图像修复图片重建和裁剪提取数据分析原始图片存在两个数据图Transmittedwave和Reflectedwave,接下来将其简称为c图和d图。两数据图的颜色范围和数据范围均一致,之后以c图进行分析:项目Value长lll2.2
- 大模型项目落地时,该如何估算模型所需GPU算力资源
kcarly
大模型知识乱炖认识系列gpu算力深度学习自然语言处理AIGC
近期公司有大模型项目落地。在前期沟通时,对于算力估算和采购方案许多小伙伴不太了解,在此对相关的算力估算和选择进行一些总结。不喜欢过程的可以直接跳到HF上提供的模型计算器要估算大模型的所需的显卡算力,首先要了解大模型的参数基础知识。大模型的规模、参数的理解模型参数单位我们的项目中客户之前测试过Qwen1.5-110B的模型,效果还比较满意。(Qwen还是国产模型中比较稳定的也是很多项目的首选)模型中
- PaddleSeg 从配置文件和模型 URL 自动化运行预测任务
如若123
自动化运维人工智能深度学习
gitclonehttps://github.com/PaddlePaddle/PaddleSeg.git#在ipynb里面运行cdPaddleSegimportsyssys.path.append('/home/aistudio/work/PaddleSeg')importos#配置文件夹路径folder_path="/home/aistudio/work/PaddleSeg/configs"#
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 6 回归集成:xgb、lgb、cat
汀沿河
#2比赛常用的代码回归数据挖掘人工智能
这个代码是从kaggle上拷贝过来的:如何使用三个树模型模块化训练;文本特征如何做,如何挖掘;时间特征的处理;模型权重集成;importpandasaspdimportmathimportnumpyasnpimportjoblibimportoptunafromlightgbmimportLGBMRegressorfromcatboostimportCatBoostRegressorfromxgb
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 全网最最实用--教你用gradio搭网页、部署模型等(代码粘贴即用、不讲虚的)
绒绒毛毛雨
大模型算法microsoft前端语言模型人工智能ai
文章目录〇前言一、构建网页1.各个组件介绍a.文本输入和输出b.图像输入和输出c.音频输入和输出d.视频输入和输出e.文件上传和下载f.滑块(`Slider`)g.单选按钮(`Radio`)h.复选框(`CheckboxGroup`)j.数据表格(`Dataframe`)2.一个网页示例代码a.按钮使用指南(事件处理和回调)3.整个网页代码b.整个网页展示二、构建ai任务a.构建一个自己的大语言模
- 『大模型笔记』AI自动化编程工具汇总[持续更新ING]!
AI大模型前沿研究
大模型笔记大模型AI自动化工具bolt.newCursorV0
『大模型笔记』AI自动化编程工具汇总!文章目录一.Bolt.new(开源AI驱动全栈Web开发工具)1.1.Bolt.new介绍1.2.编程小白如何打造自己的导航网站二.Cursor(人工智能代码编辑器)2.1.Cursor入门教程2.2.Cursor左侧布局设置和VSCode一样2.3.Cursor效率之道:Agent模式+7大高级技巧详解三.Windsurf(颠覆Cursor的全新工具)3.1
- Lambda离线实时分治架构深度解析与实战
喜欢猪猪
架构
一、引言在大数据技术日新月异的今天,Lambda架构作为一种经典的数据处理模型,在应对大规模数据应用方面展现出了强大的能力。它整合了离线批处理和实时流处理,为需要同时处理批量和实时数据的应用场景提供了成熟的解决方案。本文将对Lambda架构的演变、核心组件、工作原理及痛点进行深度解析,并通过Java代码实现一个实战实例。二、Lambda架构的演变Lambda架构是由Storm的作者NathanMa
- “大模型横扫千军”背后的大数据挖掘--浅谈MapReduce
绒绒毛毛雨
大数据挖掘数据挖掘mapreduce人工智能
文章目录O背景知识1数据挖掘2邦费罗尼原则3TF.IDF4哈希函数5分布式文件系统一、MapReduce基本介绍1.Map任务2.按键分组3.Reduce任务4.节点失效处理5.小测验:在一个大型语料库上有100个map任务和若干reduce任务:二、基于MapReduce的基本运算1.选择(Selection)2.交(Intersection)3.并(Union)4.补(Difference)5
- 大模型中的分词技术 BBPE
禅与计算机技术
深度学习大模型NLP深度学习nlp中文分词机器学习
一、OOV问题和多语言场景在自然语言处理(NLP)中,OOV(Out-of-Vocabulary)问题是指模型在处理文本时遇到未在词表中出现过的词汇,导致无法有效处理这些词汇的情况。这一问题在多语言场景中尤为突出,因为不同语言在词汇、语法结构和表达方式上存在显著差异,单一语言的词表难以全面覆盖多语言的复杂性。在多语言场景下的NLP任务中(如机器翻译、跨语言文本分类等),模型需要处理多种语言的混合文
- Topaz Video AI——视频修复
爱研究的小牛
AIGC—视频AIGC
一、TopazVideoAI介绍及使用TopazVideoAI是一款基于人工智能的视频增强和修复软件,主要用于提升视频质量、去噪、插帧和分辨率提升。它利用深度学习技术对视频进行智能化处理,使得视频看起来更加清晰和流畅。TopazVideoAI特别适合那些需要修复旧视频、提升低分辨率视频质量的用户。二、TopazVideoAI的主要功能视频去噪:通过AI模型去除视频中的噪点,使画面更加干净。分辨率提
- 元数据驱动的设想
吾爱乐享
pythonpython
本文永久更新地址:1.背景针对相似结构的表单,为了提高ui自动化编写效率,减少以减少重复工作,设想是否可以设计一个针对neoUI2.0通过元数据驱动的方式适应不同业务对象的测试框架2.设计元数据模型-字段名-字段类型-是否必填-是否只读-默认值-业务逻辑(可选,后期扩展)3.构建自动化测试框架利用现有的RF框架已实现的功能,通过实体名称打开对应实体的表单关键L进入【进入菜单】关键字进入【点击新建业
- 基于大语言模型构建本地个人AI助理
由数入道
人工智能语言模型自然语言处理
在构建本地专属的个人AI助理时,我们需要处理多个方面的技术需求,确保其在多模态数据处理、实时查询、灵活推理、知识图谱更新等方面具备高效性、实时性和可扩展性。以下探讨如何基于大语言模型构建一个具备全面功能的个人AI助理,涵盖知识库管理、动态推理、用户交互、实时学习和跨模态集成等关键技术。一、技术设计总体架构1.目标与需求个性化AI助理:构建一个本地专属AI助理,能够处理多种输入格式(文本、图像、音频
- 浅析AI大模型现状及其应用,零基础入门到精通,收藏这篇就够了
程序员_大白
互联网程序员大模型人工智能数据挖掘大模型
随着人工智能技术的迅猛发展,AI大模型已经成为全球科技竞争的焦点,展现出巨大的发展潜力和广阔的应用前景。AI大模型的应用落地正引发行业关注,技术进步正促使AI大模型的应用逐步从云端向终端设备延伸,从通用模型向针对特定行业的定制化解决方案转变,其商业潜力和对行业的影响不断增强。与此同时,国内外企业在大模型领域的竞争日趋激烈。AI大模型蓬勃发展AI大模型主要特征AI大模型具有泛化性(知识迁移到新领域)
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen