RDD 两种类型的操作: Transform转化操作 和Action行动操作。
Transform操作会由一个RDD 生成一个新的RDD,这个过程中不进行实质计算,只有当第一次Action操作时才会真正计算。 称作Lazy计算,惰性计算。
比如:
scala> val a = sc.parallelize(1 to 9, 3)
scala> val b = a.map(x => x*2) // map() 是Transform函数
scala> b.first // first() 是Action函数,此时才进行计算。
行动操作会对RDD 计算出一个结果,可以把结果返回,或把结果存储到外部存储系统(如HDFS)中。
RDD是类Iterator的数据结构,也具有Iterator类的Map()、filter()、flatMap()等高阶函数,这些函数是Scala里常用的。
1.1 Transform操作
分成单元素RDD和k-v元素RDD两种。
简单的有Map()、filter()、flatMap(),见下图:
flatMap() 对RDD中每个元素进行函数处理,和map函数不同的是,flatMap返回的可以是不同数据类型。
对单个RDD的Transform函数:
两个RDD之间的Transform函数:
我们打开spark-shell
[root@master ~]# spark-shell Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). 19/12/11 13:13:18 WARN spark.SparkContext: Use an existing SparkContext, some configuration may not take effect. Spark context Web UI available at http://192.168.199.130:4040 Spark context available as 'sc' (master = local[*], app id = local-1576041198214). Spark session available as 'spark'. Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.0.0 /_/ Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_67) Type in expressions to have them evaluated. Type :help for more information. scala> val arr=Array("abc abc d d a c f g","sdkj kji jji jkl ooj hhu jkl","jki ihb jl hjihi jiow jkw bvjg lkjsdf","iqweio kljlf kljdfj slkj tkgj") arr: Array[String] = Array(abc abc d d a c f g, sdkj kji jji jkl ooj hhu jkl, jki ihb jl hjihi jiow jkw bvjg lkjsdf, iqweio kljlf kljdfj slkj tkgj) scala> val rdd = sc.parallelize(arr) rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at parallelize at:26 scala> val rdd1 = rdd.flatMap(x=>x.split(" ")) rdd1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at flatMap at :28 scala> rdd.collect res0: Array[String] = Array(abc abc d d a c f g, sdkj kji jji jkl ooj hhu jkl, jki ihb jl hjihi jiow jkw bvjg lkjsdf, iqweio kljlf kljdfj slkj tkgj) scala> rdd1.collect res1: Array[String] = Array(abc, abc, d, d, a, c, f, g, sdkj, kji, jji, jkl, ooj, hhu, jkl, jki, ihb, jl, hjihi, jiow, jkw, bvjg, lkjsdf, iqweio, kljlf, kljdfj, slkj, tkgj) scala> val rdd2 =rdd1.map(i=>(i,1)) rdd2: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[2] at map at :30 scala> rdd2.collect res2: Array[(String, Int)] = Array((abc,1), (abc,1), (d,1), (d,1), (a,1), (c,1), (f,1), (g,1), (sdkj,1), (kji,1), (jji,1), (jkl,1), (ooj,1), (hhu,1), (jkl,1), (jki,1), (ihb,1), (jl,1), (hjihi,1), (jiow,1), (jkw,1), (bvjg,1), (lkjsdf,1), (iqweio,1), (kljlf,1), (kljdfj,1), (slkj,1), (tkgj,1)) scala> val rdd3=rdd2.reduceByKey((x,y)=>(x+y)) rdd3: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[3] at reduceByKey at :32 scala> rdd3.collect res3: Array[(String, Int)] = Array((d,2), (kljlf,1), (kji,1), (kljdfj,1), (a,1), (ooj,1), (jkl,2), (sdkj,1), (slkj,1), (jji,1), (bvjg,1), (jkw,1), (hjihi,1), (jl,1), (hhu,1), (f,1), (jki,1), (lkjsdf,1), (abc,2), (iqweio,1), (g,1), (tkgj,1), (jiow,1), (c,1), (ihb,1)) scala>