- 大模型工程师学习日记(十五):Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
MMMMMMMay Love Code
学习bert人工智能深度学习自然语言处理全量微调
1.datasets库核心方法1.1.列出数据集使用datasets库,你可以轻松列出所有HuggingFace平台上的数据集:fromdatasetsimportlist_datasets#列出所有数据集all_datasets=list_datasets()print(all_datasets)1.2.加载数据集你可以通过load_dataset方法加载任何数据集:fromdatasetsim
- 大模型工程师学习日记(十四):检索增强生成(RAG)
MMMMMMMay Love Code
学习langchain深度学习人工智能开发语言
如何递归分割文本递归分割(recursively),这个文本分割器是用于通用文本的推荐工具。它接受一个字符列表作为参数。它会按顺序尝试在这些字符上进行分割,直到块足够小。默认的字符列表是["\n\n","\n","",""]。这样做的效果是尽可能保持所有段落(然后是句子,再然后是单词)在一起,因为这些通常看起来是语义上相关的文本块。文本如何分割:根据字符列表。块大小如何衡量:根据字符数量。下面我们
- iOS OC使用正则表达式去除特殊符号并加粗文本,适用于接入AI大模型的流模式数据的文字处理
MrZWCui
iOSiosxcodeobjective-c正则表达式学习
1、编写逻辑使用分类(Category)的方法拓展NSString,本文使用NSString(Markdown),NSString的分类来编写一个通用方法,使用正则表达式匹配字符串实现去除特殊字符,并自定义文字属性。在接入AI大模型后,返回的字符串会带有特殊字符用于做文字处理,下面代码简单进行了文字处理展示。2、代码实现1、NSString+Markdown.h#importNS_ASSUME_N
- 通义千问:阿里巴巴的AI大模型深度解析
俊星学长
人工智能
通义千问:阿里巴巴的AI大模型深度解析在人工智能(AI)技术日新月异的今天,大型语言模型作为其中的佼佼者,正逐步改变着我们的生活与工作方式。阿里巴巴推出的通义千问,作为这一领域的佼佼者,以其卓越的性能和广泛的应用场景,引起了业界的广泛关注。本文将从通义千问的简介、模型架构、技术特点与优势、应用场景以及未来发展等多个方面,对其进行全面解析。一、通义千问简介通义千问是由阿里云开发的一款大型语言模型,旨
- 2280将数组和减少的最少操作次数(贪心算法) 分析+源码+证明
懒羊羊大王&
算法(贪心算法)c++(初阶)贪心算法算法
题目解析请你返回将nums数组和至少减少一半的最少操作数。这句话相当于最后数组和小于等于最开始数组和的一半。1.1算法原理解法:贪心+大根堆(堆顶为最大值)具体策略:每次挑选数组中最大的数,进行减半,直到数组和减少到至少一半为止。举例:初始nums的和为5+19+8+1=33。以下是将数组和减少至少一半的一种方法:选择数字19并减小为9.5。选择数字9.5并减小为4.75。选择数字8并减小为4。最
- DeepSeek:中国大模型 “破壁者” 引发的四大产业地震
赵同学爱学习
人工智能chatgptDeepSeek语言模型大模型开源
导语:当全球AI产业还在为GPT-4的1750亿参数惊叹时,中国团队DeepSeek以颠覆性创新撕开了大模型领域的“铁幕”。这款首个引发国际学术界集体关注的中文大模型,正从技术底层重构产业规则,其冲击波已蔓延至硬件、软件、商业模式的每个角落。一、算力霸权瓦解:低成本训推技术改写游戏规则1.1训练成本“悬崖式下降”DeepSeek通过混合专家架构(MoE)动态路由算法,在同等效果下将模型激活参数压缩
- 谷歌Gemini 3大模型发布,AI领域再掀波澜!
广拓科技
人工智能
在人工智能的浩瀚宇宙中,每一次重大突破都如同一颗璀璨的新星,照亮我们对未来的想象。而近期,谷歌发布的Gemini3大模型,无疑是其中最为耀眼的存在,它在AI领域激起的波澜,迅速蔓延至全球科技圈,引发了广泛关注与热烈讨论。随着AI技术的迅猛发展,我们已经见证了众多令人惊叹的创新成果。从智能语音助手到图像识别技术,从自动驾驶汽车到医疗诊断辅助系统,AI正以前所未有的速度改变着我们的生活和工作方式。在这
- 1046. 【USACO题库】3.2.2 Stringsobits__01串
(❁´◡`❁)Jimmy(❁´◡`❁)
粉丝才可以看的NC题解C++算法
题目:题目描述考虑排好序的N(N<=31)位二进制数。你会发现,这很有趣。因为他们是排列好的,而且包含所有可能的长度为N且含有1的个数小于等于L(L<=N)的数。你的任务是输出第I(1<=I<=长度为N的二进制数的个数)大的,长度为N,且含有1的个数小于等于L的那个二进制数。输入从文件kimbits.in中读入数据。共一行,用空格分开的三个整数N,L,I。输出输出到文件kimbits.out中。共
- 大语言模型的潜力是否被高估
dev.null
AI#NLP语言模型人工智能机器学习
关于大语言模型(LLM)的潜力是否被高估,目前学术界和产业界存在显著分歧。以下从技术能力、应用局限性和未来发展方向三个方面综合分析:一、技术能力的争议:潜力与局限并存对现实世界的理解与模拟MIT的研究表明,LLM在训练过程中可能自发形成对现实世界的内部模拟。例如,通过解决卡雷尔编程谜题(KarelPuzzle),模型在没有直接接触环境信息的情况下,正确率从初始的随机指令提升至92.4%,并展现出对
- 【贪心算法】将数组和减半的最小操作数
I_Am_Me_
贪心算法贪心算法算法
1.题目解析2208.将数组和减半的最少操作次数-力扣(LeetCode)2.讲解算法原理使用当前数组中最大的数将它减半,,直到数组和减小到一半为止,从而快速达到目的重点是找到最大数,可以采用大根堆快速达到目的3.代码classSolution{publicinthalveArray(int[]nums){PriorityQueueheap=newPriorityQueueb.compareTo(
- PO、DTO、VO等9大对象划分详解,让你的代码不再“一团糟”
码熔burning
SpringBootJavaJavaSpringBoot
目录一、PO(PersistentObject)二、DO(DomainObject)三、TO(TransferObject)四、DTO(DataTransferObject)五、VO(ViewObject)六、BO(BusinessObject)七、POJO(PlainOrdinaryJavaObject)八、DAO(DataAccessObject)九、Entity对象转换与使用场景总结何时使用
- OTSU算法 (大津算法)理解&代码
当代女大学生
机器学习python计算机视觉算法
OTSU算法:对图像进行二值化的算法介绍OTSU算法是一种自适应的阈值确定的方法,又称大津阈值分割法,是最小二乘法意义下的最优分割。它是按图像的灰度特性,将图像分成背景和前景两部分。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。从大津法的原
- (大模型微调大模型学习路线大模型入门)_大模型 学习,吹爆!2025最详细的大模型学习路线已整理!手把手带你高效入门,大模型论文全打通!
大模型老炮
学习人工智能大模型学习AI大模型大模型微调大模型教程
一、初聊大模型1、什么是大模型?大模型,通常指的是在人工智能领域中的大型预训练模型。你可以把它们想象成非常聪明的大脑,这些大脑通过阅读大量的文本、图片、声音等信息,学习到了世界的知识。这些大脑(模型)非常大,有的甚至有几千亿个参数,这些参数就像是大脑中的神经元,它们通过复杂的计算来理解和生成语言、图片等。举个例子,你可能听说过GPT-3,它就是一个非常著名的大模型。GPT-3可以通过理解你提出的问
- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- 图像拼接-UDIS详细推导和精读Unsupervised Deep Image Stitching: ReconstructingStitched Features to Images
cccc来财
算法计算机视觉深度学习
无监督粗对齐1.基于消融的策略主要是为了找到重叠区,去除无效区2.拼接域的TransformerLayer无监督图像重建1.低分辨率变形单应性变换仅能表示同一深度的空间变换,在实际的图像拼接任务中,由于输入图像的多样性和复杂性,经过第一阶段的粗对齐后,图像往往无法完全对齐。为了让网络能够感知到这些错位区域,特别是在高分辨率和大视差的情况下,设计了低分辨率变形分支,先在低分辨率下对图像进行处理和学习
- 模型的秘密武器:利用注意力改善长上下文推理能力
步子哥
人工智能自然语言处理深度学习语言模型
【导语】在大语言模型(LLM)不断刷新各项任务记录的今天,很多模型宣称能处理超长上下文内容,但在实际推理过程中,复杂问题往往因隐性事实的遗漏而败下阵来。今天,我们就以《AttentionRevealsMoreThanTokens:Training-FreeLong-ContextReasoningwithAttention-guidedRetrieval》为蓝本,带大家通俗解读如何利用Transf
- QEMU 调试 TF-A开发环境建立(使用 QEMU 调试 TF-A (Trusted Firmware-A) 之二)
robin861109
使用QEMU调试TF-A硬件架构iot物联网
文章目录前言1`TF-A(TrustedFirmware-A)`概述2`Cortex-A57`3`ARMFVP`基板4GDB调试环境介绍4.1GDB简介4.2设置GDB调试环境4.3使用GDB5、配置QEMU调试TF-A开发环境5.1安装交叉工具链5.2安装其他必需的依赖项5.3克隆TF-A源代码5.4编译TF-A(TrustedFirmware-A)6、仿真调试过程7、实际调试过程举例前言QEM
- 深入浅出C++ STL:统领STL全局
有梦想的电信狗
《C++语法精粹》——c++stl数据结构算法开发语言idevisualstudio
深入浅出C++STL:统领STL全局深入浅出C++STL:统领STL全局github主页地址前言一、STL的前世今生1.1什么是STL?1.2STL版本演进二、STL六大核心组件详解2.1容器(Containers)容器性能对照表2.2算法(Algorithms)2.3迭代器(Iterators)2.4仿函数(Functors)2.5适配器(Adapters)2.6空间配置器(Allocators
- 【原创】Linux上普通用户安装、运行nmap功能扫描指定IP地址上的端口
赵庆明老师
Linuxlinuxtcp/ip运维
由于是普通用户,因此权限受限,基本上不用考虑常规途径安装了。加上服务器操作系统可能比较老,如果使用源码编译的话,可能会有一大堆编译错误,且由于权限问题,无法解决。这里我要用到一个工具:nmap,扫描某主机。登录nmap官网https://nmap.org/点击下载https://nmap.org/download.html点击Linux版的nmap,下载rpm安装包下载完后,上载到服务器。使用以下
- 六月份阶段性大总结之Doris/Clickhouse/Hudi一网打尽
王知无(import_bigdata)
大数据编程语言人工智能java数据分析
点击上方蓝色字体,选择“设为星标”回复"面试"获取更多惊喜全网最全大数据面试提升手册!这是个阶段性小总结,后面会持续更新。ClickHouse「Clickhouse系列」分布式表&本地表详解「ClickHouse系列」ClickHouse之MergeTree原理「ClickHouse系列」Replication机制详解「ClickHouse系列」ClickHouseSQL基本语法和导入导出实战「C
- 2025年开源大模型全景:语言、多模态与开发工具的前沿探索
软件职业规划
开源
语言类开源大模型1.Llama系列开发者:Meta发布时间:2024年7月参数量:8B、70B、405B特点:Llama系列模型以其强大的多语言支持和广泛的自然语言处理能力而闻名。它支持文本生成、问答、翻译等多种任务,尤其在处理长篇文本时表现出色,支持高达128K的上下文长度。Meta与超过25个合作伙伴共同推出该系列模型,包括亚马逊云科技、Databricks和英伟达等,推动了开源大模型在工业界
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- AI大模型时代,2025大龄程序员如何轻松转型赢未来?
AI大模型学习不迷路
人工智能自然语言处理大模型大语言模型语言模型程序员转行
当前大龄程序员的处境在科技行业的高速发展中,大龄程序员这一群体正面临着前所未有的挑战。随着新兴技术的不断涌现,如云计算、大数据、人工智能等,传统的编程技能逐渐显得“过时”。同时,年轻一代的程序员以更加低廉的薪酬和旺盛的精力涌入市场,加剧了职场的竞争。对于大龄程序员而言,他们不仅需要应对技能更新的压力,还常常受到年龄歧视的影响,尤其是在追求创新和速度的科技公司中。许多大龄程序员发现自己处于尴尬境地,
- HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发引言在金融科技领域,数据可视化是帮助用户快速理解复杂数据的关键工具。随着HarmonyNext的推出,开发者可以利用ArkTS的强大能力,构建高性能、跨平台的金融数据可视化应用。本文将深入探讨如何基于ArkTS开发一个金融数据可视化应用,并通过一个实战案例详细讲解其实现过程。项目背景与需求分析项目背景金融数据通常具有高维度、大
- 数字隐形盾牌:日常场景下的网络安全实践
安全防护
一、网络威胁:潜伏在屏幕后的"数字劫匪"2025年全球每11秒发生一次勒索攻击,每天新增45万个钓鱼网站,你的手机里可能正躺着3-5个高危漏洞。这些数据揭示了一个残酷现实:我们正生活在一个"数字丛林时代"。三大致命威胁:钓鱼攻击升级版:骗子不仅伪造银行邮件,现在会克隆公司高管的微信,用AI模仿老板声音要求转账**Wi-Fi陷阱:**商场免费Wi-Fi可能在15秒内窃取你的支付密码,机场充电桩可能成
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- 8051汇编--条件转移指令
wperseverance
51单片机51单片机
在8051汇编语言中,控制转移指令用于改变程序的执行顺序,主要包括无条件转移、条件转移和调用/返回指令。以下是对这些指令的总结:一、无条件转移指令LJMP(LongJump)•功能:长转移,可以跳转到同一程序空间中的任何地址。•指令格式:LJMPaddr16,其中addr16是16位的目标地址。•特点:跳转范围大,适用于跨段跳转。•使用场景:当需要跳转到较远的地址时使用。SJMP(ShortJum
- 【颠覆认知】大模型开发终极实战:30分钟用LangChain打造「超级AI客服」系统(附全代码+黑科技调参技巧)
煜bart
人工智能
重磅提示:文末含99%开发者不知道的Prompt逆向注入破解方案!---###一、撕开大模型开发的遮羞布:传统方案的三大致命陷阱传统AI客服系统开发面临:1.对话记忆金鱼症(7轮对话必失忆)2.知识库更新堪比器官移植3.业务逻辑与AI模型强耦合我们
- 人工智能_大模型091_大模型工作流001_使用工作流的原因_处理复杂问题_多轮自我反思优化ReAct_COT思维链---人工智能工作笔记0236
添柴程序猿
大模型开发&神经网络人工智能大模型工作流COT思维链ReAct自我反思优化大模型工作流开发
#清理环境信息,与上课内容无关importosos.environ["LANGCHAIN_PROJECT"]=""os.environ["LANGCHAIN_API_KEY"]=""os.environ["LANGCHAIN_ENDPOINT"]=""os.environ["LANGCHAIN_TRACING_V2"]=""#安装所需要使用的包!pipinstallopenailanggraphA
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一