[NoSQL数据库] Redis基础

一、NoSQL

NoSQL:Not only SQL。

NoSQL特点:

  • 不支持SQL语法
  • 存储结构和传统关系型数据库中的关系表不同,NoSQL中的数据采用KV形式
  • NoSQL没有通用的语言,每种NoSQL数据库都有自己的API和语法,以及擅长的业务场景
  • NoSQL的产品种类多:例如MongoDB、Redis、Hbase、Cassandia hadoop等。

 

NoSQL与SQL数据库的比较:

  • SQL数据库适用于关系特别复杂的数据查询场景,NoSQL反之。
  • 事务特性:SQL对事务的支持非常完善,而NoSQL反之(也支持事务)。
  • 两者在不断的取长补短,呈现融合趋势。

 

二、Redis简介

Redis是一个开源的数据库,使用ANSI C语言编写,支持网络访问,可基于内存,也可日志持久化,是一种K-V数据库,并提供多种语言的API。

 

在2013年5月之前,其开发由VMware赞助,而2013年5月至2015年6月期间,其开发由毕威拓赞助,从2015年6月开始,Redis的开发由Redis Labs赞助。

[NoSQL数据库] Redis基础_第1张图片

Redis是NoSQL阵营中的一员,它通过多种键值数据类型来适应不同场景下的存储需求,借助一些高层的接口使其可以胜任缓存、队列系统的不同角色。

Redis提供了Java、C/C++、C#、 PHP 、JavaScript、 Perl 、Object-C、Python、Ruby、Erlang、Golang等多种主流语言的客户端。

 

三、Redis的特性

1.支持持久化,可以将内存数据保存到磁盘中,重启的时候可以再次加载进行使用。

2.Redis不仅仅支持简单的KV数据类型,还提供list、set、zset、hash等数据结构的存储。

3.Redis支持数据的备份,即master-slave模式的数据备份。

 

四、Redis的优势

1.性能极高:读速度可达110000次/s,写速度可达81000次/s

2.丰富的数据类型:list、set、hash、string以及Order set等数据类型

3.天生原子性:数据访问是原子性的,不存在访问数据冲突的问题

4.丰富的特性:Redis还支持发布订阅、通知、key过期的特性。

 

五、Redis安装与配置

1.Redis源码编译安装

在CentOS7下:

# 安装gcc编译器
yum install gcc -y
# 下载redis
wget http://download.redis.io/releases/redis-5.0.7.tar.gz
# 解压缩
tar xzf redis-5.0.7.tar.gz
# 移动文件夹到/usr/local中
mv redis-5.0.7 /usr/local/
# 进入redis目录
cd /usr/local/redis-5.0.7
# 编译
make all
# 安装tcl
yum install tcl -y
# 运行redis测试
make test
# 安装到/usr/local/bin下
make install

进入/usr/local/bin下查看安装好的redis命令:

[root@centos-base bin]# ll
total 32772
-rwxr-xr-x. 1 root root 4366808 Jan  5 14:20 redis-benchmark
-rwxr-xr-x. 1 root root 8125200 Jan  5 14:20 redis-check-aof
-rwxr-xr-x. 1 root root 8125200 Jan  5 14:20 redis-check-rdb
-rwxr-xr-x. 1 root root 4807880 Jan  5 14:20 redis-cli
lrwxrwxrwx. 1 root root      12 Jan  5 14:20 redis-sentinel -> redis-server
-rwxr-xr-x. 1 root root 8125200 Jan  5 14:20 redis-server

 

2.Redis配置

拷贝redis.conf:

cd /etc
mkdir redis
cd /usr/local/redis-5.0.7
cp redis.conf /etc/redis/redis.conf

修改配置:

vi /etc/redis/redis.conf
bind 192.168.1.181 127.0.0.1 # 服务IP地址
port 6379  # 服务端口
daemonize yes  # 是否以守护进程形式运行
dbfilename dump.rdb  # 持久化数据文件名称
dir /var/lib/redis  # 持久化数据文件存放位置
logfile /var/log/redis/redis-server.log  # 日志文件存放位置
database 16  # 一共16个数据库,编号1~15
slaveof  # 设置主从复制(用于分布式)

注意:持久化数据文件和日志文件的存放地址,要事先创建存放文件目录。

cd /var/lib
mkdir redis
cd /var/log
mkdir redis

 

配置文件参考:

(转自https://blog.csdn.net/ljphilp/article/details/52934933)

  1 # Redis configuration file example
  2  
  3 # Note on units: when memory size is needed, it is possible to specify
  4 # it in the usual form of 1k 5GB 4M and so forth:
  5 # 内存大小的配置,下面是内存大小配置的转换方式
  6 #
  7 # 1k => 1000 bytes
  8 # 1kb => 1024 bytes
  9 # 1m => 1000000 bytes
 10 # 1mb => 1024*1024 bytes
 11 # 1g => 1000000000 bytes
 12 # 1gb => 1024*1024*1024 bytes
 13 #
 14 # units are case insensitive so 1GB 1Gb 1gB are all the same.
 15 # 内存大小的配置,不区分大小写
 16  
 17 ################################## INCLUDES ###################################
 18  
 19 # Include one or more other config files here.  This is useful if you
 20 # have a standard template that goes to all Redis server but also need
 21 # to customize a few per-server settings.  Include files can include
 22 # other files, so use this wisely.
 23 #
 24 # Notice option "include" won't be rewritten by command "CONFIG REWRITE"
 25 # from admin or Redis Sentinel. Since Redis always uses the last processed
 26 # line as value of a configuration directive, you'd better put includes
 27 # at the beginning of this file to avoid overwriting config change at runtime.
 28 #
 29 # If instead you are interested in using includes to override configuration
 30 # options, it is better to use include as the last line.
 31 #
 32 # include /path/to/local.conf
 33 # include /path/to/other.conf
 34 # 当配置多个redis时,可能大部分配置一样,而对于不同的redis,只有少部分配置需要定制
 35 # 就可以配置一个公共的模板配置。
 36 # 对于具体的reids,只需设置少量的配置,并用include把模板配置包含进来即可。
 37 #
 38 # 值得注意的是,对于同一个配置项,redis只对最后一行的有效
 39 # 所以为避免模板配置覆盖当前配置,应在配置文件第一行使用include
 40 # 当然,如果模板配置的优先级比较高,就在配置文件最后一行使用include
 41  
 42 ################################ GENERAL  #####################################
 43  
 44 # By default Redis does not run as a daemon. Use 'yes' if you need it.
 45 # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
 46 # yes为使用守护进程,此时redis的进程ID会被写进 pidfile的配置中
 47 daemonize yes
 48  
 49 # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
 50 # default. You can specify a custom pid file location here.
 51 # 当redis以守护进程的方式启动时,redis的进程ID将会写在这个文件中
 52 pidfile /var/run/redis.pid
 53  
 54 # Accept connections on the specified port, default is 6379.
 55 # If port 0 is specified Redis will not listen on a TCP socket.
 56 # redis 启动的端口。【应该知道redis是服务端吧】
 57 port 6379
 58  
 59 # TCP listen() backlog.
 60 #
 61 # In high requests-per-second environments you need an high backlog in order
 62 # to avoid slow clients connections issues. Note that the Linux kernel
 63 # will silently truncate it to the value of /proc/sys/net/core/somaxconn so
 64 # make sure to raise both the value of somaxconn and tcp_max_syn_backlog
 65 # in order to get the desired effect.
 66 # 最大链接缓冲池的大小,这里应该是指的未完成链接请求的数量
 67 #(测试值为1时,仍可以有多个链接)
 68 # 但该值与listen函数中的backlog意义应该是相同的,源码中该值就是被用在了listen函数中
 69 # 该值同时受/proc/sys/net/core/somaxconn 和 tcp_max_syn_backlog(/etc/sysctl.conf中配置)的限制
 70 # tcp_max_syn_backlog 指的是未完成链接的数量
 71 tcp-backlog 511
 72  
 73 # By default Redis listens for connections from all the network interfaces
 74 # available on the server. It is possible to listen to just one or multiple
 75 # interfaces using the "bind" configuration directive, followed by one or
 76 # more IP addresses.
 77 # 绑定ip,指定ip可以连接到redis
 78 #
 79 # Examples:
 80 #
 81 # bind 192.168.1.100 10.0.0.1
 82 # bind 127.0.0.1
 83  
 84 # Specify the path for the Unix socket that will be used to listen for
 85 # incoming connections. There is no default, so Redis will not listen
 86 # on a unix socket when not specified.
 87 #
 88 # 这个应该就是以文件形式创建的socket
 89 # unixsocket /tmp/redis.sock
 90 # unixsocketperm 755
 91  
 92 # Close the connection after a client is idle for N seconds (0 to disable)
 93 # 超时断链机制,如果一个链接在N秒内没有任何操作,则断开该链接
 94 # N为0时,该机制失效
 95 timeout 0
 96  
 97 # TCP keepalive.
 98 #
 99 # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
100 # of communication. This is useful for two reasons:
101 #
102 # 1) Detect dead peers.
103 # 2) Take the connection alive from the point of view of network
104 #    equipment in the middle.
105 #
106 # On Linux, the specified value (in seconds) is the period used to send ACKs.
107 # Note that to close the connection the double of the time is needed.
108 # On other kernels the period depends on the kernel configuration.
109 # 就像心跳检测一样,检查链接是否保持正常,同时也可以保持正常链接的通信
110 # 建议值为60
111 #
112 # A reasonable value for this option is 60 seconds.
113 tcp-keepalive 0
114  
115 # Specify the server verbosity level.
116 # This can be one of:
117 # debug (a lot of information, useful for development/testing)
118 # verbose (many rarely useful info, but not a mess like the debug level)
119 # notice (moderately verbose, what you want in production probably)
120 # warning (only very important / critical messages are logged)
121 # 日志级别
122 loglevel notice
123  
124 # Specify the log file name. Also the empty string can be used to force
125 # Redis to log on the standard output. Note that if you use standard
126 # output for logging but daemonize, logs will be sent to /dev/null
127 # 日志存放路径,默认是输出到标准输出,但当以守护进程方式启动时,默认输出到/dev/null(传说中的linux黑洞)
128 logfile ""
129  
130 # To enable logging to the system logger, just set 'syslog-enabled' to yes,
131 # and optionally update the other syslog parameters to suit your needs.
132 # yes 表示将日志写到系统日志中
133 # syslog-enabled no
134  
135 # Specify the syslog identity.
136 # 当syslog-enabled为yes时,指定系统日志的标示为 redis
137 # syslog-ident redis
138  
139 # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
140 # 指定系统日志的设备
141 # syslog-facility local0
142  
143 # Set the number of databases. The default database is DB 0, you can select
144 # a different one on a per-connection basis using SELECT  where
145 # dbid is a number between 0 and 'databases'-1
146 # redis的数据库格式,默认16个(0~15),默认使用第0个。
147 databases 16
148  
149 ################################ SNAPSHOTTING  ################################
150 #
151 # Save the DB on disk:
152 #
153 #   save  
154 #
155 #   Will save the DB if both the given number of seconds and the given
156 #   number of write operations against the DB occurred.
157 # 快照,即将数据写到硬盘上,在秒内,至少有次写入数据库操作
158 # 则会将数据写入硬盘一次。
159 # 将save行注释掉则永远不会写入硬盘
160 # save "" 表示删除所有的快照点
161 #
162 #   In the example below the behaviour will be to save:
163 #   after 900 sec (15 min) if at least 1 key changed
164 #   after 300 sec (5 min) if at least 10 keys changed
165 #   after 60 sec if at least 10000 keys changed
166 #
167 #   Note: you can disable saving at all commenting all the "save" lines.
168 #
169 #   It is also possible to remove all the previously configured save
170 #   points by adding a save directive with a single empty string argument
171 #   like in the following example:
172 #
173 #   save ""
174  
175 save 900 1
176 save 300 10
177 save 60 10000
178  
179 # By default Redis will stop accepting writes if RDB snapshots are enabled
180 # (at least one save point) and the latest background save failed.
181 # This will make the user aware (in a hard way) that data is not persisting
182 # on disk properly, otherwise chances are that no one will notice and some
183 # disaster will happen.
184 #
185 # If the background saving process will start working again Redis will
186 # automatically allow writes again.
187 #
188 # However if you have setup your proper monitoring of the Redis server
189 # and persistence, you may want to disable this feature so that Redis will
190 # continue to work as usual even if there are problems with disk,
191 # permissions, and so forth.
192 # 当做快照失败的时候,redis会停止继续向其写入数据,保证第一时间发现redis快照出现问题
193 # 当然,通过下面配置为 no,即使redis快照失败,也能继续向redis写入数据
194 stop-writes-on-bgsave-error yes
195  
196 # Compress string objects using LZF when dump .rdb databases?
197 # For default that's set to 'yes' as it's almost always a win.
198 # If you want to save some CPU in the saving child set it to 'no' but
199 # the dataset will likely be bigger if you have compressible values or keys.
200 # 快照的时候,是否用LZF压缩,使用压缩会占一定的cpu,但不使用压缩,快照会很大
201 rdbcompression yes
202  
203 # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
204 # This makes the format more resistant to corruption but there is a performance
205 # hit to pay (around 10%) when saving and loading RDB files, so you can disable it
206 # for maximum performances.
207 #
208 # RDB files created with checksum disabled have a checksum of zero that will
209 # tell the loading code to skip the check.
210 # 数据校验,快照末尾会存放一个校验值,保证数据的准确性
211 # 但数据校验会使性能下降约10%,默认开启校验
212 rdbchecksum yes
213  
214 # The filename where to dump the DB
215 # 快照的名字
216 dbfilename dump.rdb
217  
218 # The working directory.
219 #
220 # The DB will be written inside this directory, with the filename specified
221 # above using the 'dbfilename' configuration directive.
222 # 
223 # The Append Only File will also be created inside this directory.
224 # 
225 # Note that you must specify a directory here, not a file name.
226 # 
227 # 快照存放的目录
228 # linux root下测试,会发现该进程会在当前目录下创建一个dump.rdb
229 # 但快照却放在了根目录/下,重启的时候,是不会从快照中恢复数据的
230 # 当把根目录下的dump.rdb文件拷贝到当前目录的时候,再次启动,就会从快照中恢复数据
231 # 而且以后的快照也都在当前目录的dump.rdb中做操作
232 #
233 # 值得一提的是,快照是异步方式的,如果在还未达到快照的时候,修改了数据,而且redis发生问题crash了
234 # 那么中间的修改数据是不会被保存到dump.rdb快照中的
235 # 解决办法就是用Append Only Mode的同步模式(下面将会有该配置项)
236 # 将会把每个操作写到Append Only File中,该文件也存放于当前配置的目录
237 # 建议使用绝对路径!!!
238 # 
239 dir ./
240  
241 ################################# REPLICATION #################################
242  
243 # Master-Slave replication. Use slaveof to make a Redis instance a copy of
244 # another Redis server. Note that the configuration is local to the slave
245 # so for example it is possible to configure the slave to save the DB with a
246 # different interval, or to listen to another port, and so on.
247 #
248 # 主从复制,类似于双机备份。
249 # 配置需指定主机的ip 和port
250 # slaveof  
251  
252 # If the master is password protected (using the "requirepass" configuration
253 # directive below) it is possible to tell the slave to authenticate before
254 # starting the replication synchronization process, otherwise the master will
255 # refuse the slave request.
256 #
257 # 如果主机redis需要密码,则指定密码
258 # 密码配置在下面安全配置中
259 # masterauth 
260  
261 # When a slave loses its connection with the master, or when the replication
262 # is still in progress, the slave can act in two different ways:
263 #
264 # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
265 #    still reply to client requests, possibly with out of date data, or the
266 #    data set may just be empty if this is the first synchronization.
267 #
268 # 2) if slave-serve-stale-data is set to 'no' the slave will reply with
269 #    an error "SYNC with master in progress" to all the kind of commands
270 #    but to INFO and SLAVEOF.
271 #
272 # 当从机与主机断开时,即同步出现问题的时候,从机有两种处理方式
273 # yes, 继续响应客户端请求,但可能有脏数据(过期数据、空数据等)
274 # no,对客户端的请求统一回复为“SYNC with master in progress”,除了INFO和SLAVEOF命令
275 slave-serve-stale-data yes
276  
277 # You can configure a slave instance to accept writes or not. Writing against
278 # a slave instance may be useful to store some ephemeral data (because data
279 # written on a slave will be easily deleted after resync with the master) but
280 # may also cause problems if clients are writing to it because of a
281 # misconfiguration.
282 #
283 # Since Redis 2.6 by default slaves are read-only.
284 #
285 # Note: read only slaves are not designed to be exposed to untrusted clients
286 # on the internet. It's just a protection layer against misuse of the instance.
287 # Still a read only slave exports by default all the administrative commands
288 # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
289 # security of read only slaves using 'rename-command' to shadow all the
290 # administrative / dangerous commands.
291 # slave只读选项,设置从机只读(默认)。
292 # 即使设置可写,当下一次从主机上同步数据,仍然会删除当前从机上写入的数据
293 # 【待测试】:主机与从机互为slave会出现什么情况?
294 # 【预期三种结果】:1. 提示报错 2. 主从服务器数据不可控 3. 一切正常
295 slave-read-only yes
296  
297 # Slaves send PINGs to server in a predefined interval. It's possible to change
298 # this interval with the repl_ping_slave_period option. The default value is 10
299 # seconds.
300 #
301 # 从服务器向主服务器发送心跳包,默认10发送一次
302 # repl-ping-slave-period 10
303  
304 # The following option sets the replication timeout for:
305 #
306 # 1) Bulk transfer I/O during SYNC, from the point of view of slave.
307 # 2) Master timeout from the point of view of slaves (data, pings).
308 # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
309 #
310 # It is important to make sure that this value is greater than the value
311 # specified for repl-ping-slave-period otherwise a timeout will be detected
312 # every time there is low traffic between the master and the slave.
313 #
314 # 超时响应时间,值必须比repl-ping-slave-period大
315 # 批量数据传输超时、ping超时
316 # repl-timeout 60
317  
318 # Disable TCP_NODELAY on the slave socket after SYNC?
319 #
320 # If you select "yes" Redis will use a smaller number of TCP packets and
321 # less bandwidth to send data to slaves. But this can add a delay for
322 # the data to appear on the slave side, up to 40 milliseconds with
323 # Linux kernels using a default configuration.
324 #
325 # If you select "no" the delay for data to appear on the slave side will
326 # be reduced but more bandwidth will be used for replication.
327 #
328 # By default we optimize for low latency, but in very high traffic conditions
329 # or when the master and slaves are many hops away, turning this to "yes" may
330 # be a good idea.
331 # 主从同步是否延迟
332 # yes 有延迟,约40毫秒(linux kernel的默认配置),使用较少的数据包,较小的带宽
333 # no 无延迟(减少延迟),但需要更大的带宽
334 repl-disable-tcp-nodelay no
335  
336 # Set the replication backlog size. The backlog is a buffer that accumulates
337 # slave data when slaves are disconnected for some time, so that when a slave
338 # wants to reconnect again, often a full resync is not needed, but a partial
339 # resync is enough, just passing the portion of data the slave missed while
340 # disconnected.
341 #
342 # The biggest the replication backlog, the longer the time the slave can be
343 # disconnected and later be able to perform a partial resynchronization.
344 #
345 # The backlog is only allocated once there is at least a slave connected.
346 #
347 # 默认情况下,当slave重连的时候,会进行全量数据同步
348 # 但实际上slave只需要部分同步即可,这个选项设置部分同步的大小
349 # 设置值越大,同步的时间就越长
350 # repl-backlog-size 1mb
351  
352 # After a master has no longer connected slaves for some time, the backlog
353 # will be freed. The following option configures the amount of seconds that
354 # need to elapse, starting from the time the last slave disconnected, for
355 # the backlog buffer to be freed.
356 #
357 # A value of 0 means to never release the backlog.
358 #
359 # 主机的后台日志释放时间,即当没有slave连接时,过多久释放后台日志
360 # 0表示不释放
361 # repl-backlog-ttl 3600
362  
363 # The slave priority is an integer number published by Redis in the INFO output.
364 # It is used by Redis Sentinel in order to select a slave to promote into a
365 # master if the master is no longer working correctly.
366 #
367 # A slave with a low priority number is considered better for promotion, so
368 # for instance if there are three slaves with priority 10, 100, 25 Sentinel will
369 # pick the one with priority 10, that is the lowest.
370 #
371 # However a special priority of 0 marks the slave as not able to perform the
372 # role of master, so a slave with priority of 0 will never be selected by
373 # Redis Sentinel for promotion.
374 #
375 # By default the priority is 100.
376 # 当主机crash的时候,在从机中选择一台作为主机,数字越小,优先级越高
377 # 0 表示永远不作为主机,默认值是100
378 slave-priority 100
379  
380 # It is possible for a master to stop accepting writes if there are less than
381 # N slaves connected, having a lag less or equal than M seconds.
382 #
383 # The N slaves need to be in "online" state.
384 #
385 # The lag in seconds, that must be <= the specified value, is calculated from
386 # the last ping received from the slave, that is usually sent every second.
387 #
388 # This option does not GUARANTEES that N replicas will accept the write, but
389 # will limit the window of exposure for lost writes in case not enough slaves
390 # are available, to the specified number of seconds.
391 #
392 # For example to require at least 3 slaves with a lag <= 10 seconds use:
393 #
394 # 当slave数量小于min-slaves-to-write,且延迟小于等于min-slaves-max-lag时,
395 # 主机停止写入操作
396 # 0表示禁用
397 # 默认min-slaves-to-write为0,即禁用。min-slaves-max-lag为10
398 # min-slaves-to-write 3
399 # min-slaves-max-lag 10
400 #
401 # Setting one or the other to 0 disables the feature.
402 #
403 # By default min-slaves-to-write is set to 0 (feature disabled) and
404 # min-slaves-max-lag is set to 10.
405 ################################## SECURITY ###################################
406 # Require clients to issue AUTH  before processing any other
407 # commands.  This might be useful in environments in which you do not trust
408 # others with access to the host running redis-server.
409 #
410 # This should stay commented out for backward compatibility and because most
411 # people do not need auth (e.g. they run their own servers).
412 # 
413 # Warning: since Redis is pretty fast an outside user can try up to
414 # 150k passwords per second against a good box. This means that you should
415 # use a very strong password otherwise it will be very easy to break.
416 #
417 # redis密码,默认不配置,即无密码
418 # 这里注意,如果设置了密码,应该设置一个复杂度比较高的密码
419 # 因为redis的速度很快,每秒可以尝试150k次的密码测试,很容易对其进行暴力破解(跑码)。
420 # 疑问:这里为什么不设置一个针对主机的测试次数限制的,例如每10次,则禁止建立连接1个小时!
421 # requirepass foobared
422  
423 # Command renaming.
424 #
425 # It is possible to change the name of dangerous commands in a shared
426 # environment. For instance the CONFIG command may be renamed into something
427 # hard to guess so that it will still be available for internal-use tools
428 # but not available for general clients.
429 #
430 # 命令重命名,将命令重命名为另一个字符串标识
431 # 如果命令为空串(""),则会彻底禁用该命令
432 # 命令重命名,会对写AOF(Append of file)文件、slave从机造成一些问题
433 # Example:
434 #
435 # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
436 #
437 # It is also possible to completely kill a command by renaming it into
438 # an empty string:
439 #
440 # rename-command CONFIG ""
441 #
442 # Please note that changing the name of commands that are logged into the
443 # AOF file or transmitted to slaves may cause problems.
444  
445 ################################### LIMITS ####################################
446  
447 # Set the max number of connected clients at the same time. By default
448 # this limit is set to 10000 clients, however if the Redis server is not
449 # able to configure the process file limit to allow for the specified limit
450 # the max number of allowed clients is set to the current file limit
451 # minus 32 (as Redis reserves a few file descriptors for internal uses).
452 #
453 # Once the limit is reached Redis will close all the new connections sending
454 # an error 'max number of clients reached'.
455 #
456 # 这只redis的最大连接数目,默认设置为10000个客户端
457 # 当超过限制时,将段开新的连接,并响应“max number of clients reached”
458 # maxclients 10000
459  
460 # Don't use more memory than the specified amount of bytes.
461 # When the memory limit is reached Redis will try to remove keys
462 # according to the eviction policy selected (see maxmemory-policy).
463 #
464 # If Redis can't remove keys according to the policy, or if the policy is
465 # set to 'noeviction', Redis will start to reply with errors to commands
466 # that would use more memory, like SET, LPUSH, and so on, and will continue
467 # to reply to read-only commands like GET.
468 #
469 # This option is usually useful when using Redis as an LRU cache, or to set
470 # a hard memory limit for an instance (using the 'noeviction' policy).
471 #
472 # WARNING: If you have slaves attached to an instance with maxmemory on,
473 # the size of the output buffers needed to feed the slaves are subtracted
474 # from the used memory count, so that network problems / resyncs will
475 # not trigger a loop where keys are evicted, and in turn the output
476 # buffer of slaves is full with DELs of keys evicted triggering the deletion
477 # of more keys, and so forth until the database is completely emptied.
478 #
479 # In short... if you have slaves attached it is suggested that you set a lower
480 # limit for maxmemory so that there is some free RAM on the system for slave
481 # output buffers (but this is not needed if the policy is 'noeviction').
482 #
483 # redis的最大内存限制,如果达到最大内存,会按照下面的maxmemory-policy进行清除
484 # 如果不能再清除或者maxmemory-policy为noeviction,则对于需要增加空间的操作,将会返回错误
485 maxmemory <1024*1024*1024>
486  
487 # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
488 # is reached. You can select among five behaviors:
489 # 
490 # volatile-lru -> remove the key with an expire set using an LRU algorithm
491 # allkeys-lru -> remove any key accordingly to the LRU algorithm
492 # volatile-random -> remove a random key with an expire set
493 # allkeys-random -> remove a random key, any key
494 # volatile-ttl -> remove the key with the nearest expire time (minor TTL)
495 # noeviction -> don't expire at all, just return an error on write operations
496 # 
497 # Note: with any of the above policies, Redis will return an error on write
498 #       operations, when there are not suitable keys for eviction.
499 #
500 #       At the date of writing this commands are: set setnx setex append
501 #       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
502 #       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
503 #       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
504 #       getset mset msetnx exec sort
505 #
506 # The default is:
507 #
508 # 内存删除策略,默认volatile-lru,利用LRU算法,删除过期的key
509 maxmemory-policy volatile-lru
510  
511 # LRU and minimal TTL algorithms are not precise algorithms but approximated
512 # algorithms (in order to save memory), so you can select as well the sample
513 # size to check. For instance for default Redis will check three keys and
514 # pick the one that was used less recently, you can change the sample size
515 # using the following configuration directive.
516 #
517 # LRU算法与最小TTL算法只是相对精确的算法,并不是绝对精确的算法
518 # 为了更精确,可以设置样本个数
519 # 比如设置3个样本,redis会选取三个key,并选择删除那个上次使用时间最远的
520 # maxmemory-samples 3
521  
522 ############################## APPEND ONLY MODE ###############################
523  
524 # By default Redis asynchronously dumps the dataset on disk. This mode is
525 # good enough in many applications, but an issue with the Redis process or
526 # a power outage may result into a few minutes of writes lost (depending on
527 # the configured save points).
528 #
529 # The Append Only File is an alternative persistence mode that provides
530 # much better durability. For instance using the default data fsync policy
531 # (see later in the config file) Redis can lose just one second of writes in a
532 # dramatic event like a server power outage, or a single write if something
533 # wrong with the Redis process itself happens, but the operating system is
534 # still running correctly.
535 #
536 # AOF and RDB persistence can be enabled at the same time without problems.
537 # If the AOF is enabled on startup Redis will load the AOF, that is the file
538 # with the better durability guarantees.
539 #
540 # Please check http://redis.io/topics/persistence for more information.
541 # 将对redis所有的操作都保存到AOF文件中
542 # 因为dump.rdb是异步的,在下次快照到达之前,如果出现crash等问题,会造成数据丢失
543 # 而AOF文件时同步记录的,所以会完整的恢复数据
544  
545 appendonly no
546  
547 # The name of the append only file (default: "appendonly.aof")
548 # AOF文件的名字
549  
550 appendfilename "appendonly.aof"
551  
552 # The fsync() call tells the Operating System to actually write data on disk
553 # instead to wait for more data in the output buffer. Some OS will really flush 
554 # data on disk, some other OS will just try to do it ASAP.
555 #
556 # Redis supports three different modes:
557 #
558 # no: don't fsync, just let the OS flush the data when it wants. Faster.
559 # always: fsync after every write to the append only log . Slow, Safest.
560 # everysec: fsync only one time every second. Compromise.
561 #
562 # The default is "everysec", as that's usually the right compromise between
563 # speed and data safety. It's up to you to understand if you can relax this to
564 # "no" that will let the operating system flush the output buffer when
565 # it wants, for better performances (but if you can live with the idea of
566 # some data loss consider the default persistence mode that's snapshotting),
567 # or on the contrary, use "always" that's very slow but a bit safer than
568 # everysec.
569 #
570 # More details please check the following article:
571 # http://antirez.com/post/redis-persistence-demystified.html
572 #
573 # If unsure, use "everysec".
574 # redis的数据同步方式,三种
575 # no,redis本身不做同步,由OS来做。redis的速度会很快
576 # always,在每次写操作之后,redis都进行同步,即写入AOF文件。redis会变慢,但是数据更安全
577 # everysec,折衷考虑,每秒同步一次数据。【默认】
578  
579 # appendfsync always
580 appendfsync everysec
581 # appendfsync no
582  
583 # When the AOF fsync policy is set to always or everysec, and a background
584 # saving process (a background save or AOF log background rewriting) is
585 # performing a lot of I/O against the disk, in some Linux configurations
586 # Redis may block too long on the fsync() call. Note that there is no fix for
587 # this currently, as even performing fsync in a different thread will block
588 # our synchronous write(2) call.
589 #
590 # In order to mitigate this problem it's possible to use the following option
591 # that will prevent fsync() from being called in the main process while a
592 # BGSAVE or BGREWRITEAOF is in progress.
593 #
594 # This means that while another child is saving, the durability of Redis is
595 # the same as "appendfsync none". In practical terms, this means that it is
596 # possible to lose up to 30 seconds of log in the worst scenario (with the
597 # default Linux settings).
598 # 
599 # If you have latency problems turn this to "yes". Otherwise leave it as
600 # "no" that is the safest pick from the point of view of durability.
601 # redis的同步方式中,always和everysec,快照和写AOF可能会执行大量的硬盘I/O操作,
602 # 而在一些Linux的配置中,redis会阻塞很久,而redis本身并没有很好的解决这一问题。
603 # 为了缓和这一问题,redis提供no-appendfsync-on-rewrite选项,
604 # 即当有另外一个进程在执行保存操作的时候,redis采用no的同步方式。
605 # 最坏情况下会有延迟30秒的同步延迟。
606 # 如果你觉得这样做会有潜在危险,则请将该选项改为yes。否则就保持默认值no(基于稳定性考虑)。
607  
608 no-appendfsync-on-rewrite no
609  
610 # Automatic rewrite of the append only file.
611 # Redis is able to automatically rewrite the log file implicitly calling
612 # BGREWRITEAOF when the AOF log size grows by the specified percentage.
613 # 
614 # This is how it works: Redis remembers the size of the AOF file after the
615 # latest rewrite (if no rewrite has happened since the restart, the size of
616 # the AOF at startup is used).
617 #
618 # This base size is compared to the current size. If the current size is
619 # bigger than the specified percentage, the rewrite is triggered. Also
620 # you need to specify a minimal size for the AOF file to be rewritten, this
621 # is useful to avoid rewriting the AOF file even if the percentage increase
622 # is reached but it is still pretty small.
623 #
624 # Specify a percentage of zero in order to disable the automatic AOF
625 # rewrite feature.
626 # 自动重写AOF文件
627 # 当AOF日志文件大小增长到指定百分比时,redis会自动隐式调用BGREWRITEAOF来重写AOF文件
628 # redis会记录上次重写AOF文件之后的大小,
629 # 如果当前文件大小增加了auto-aof-rewrite-percentage,则会触发重写AOF日志功能
630 # 当然如果文件过小,比如小于auto-aof-rewrite-min-size这个大小,是不会触发重写AOF日志功能的
631 # auto-aof-rewrite-percentage为0时,禁用重写功能
632  
633 auto-aof-rewrite-percentage 100
634 auto-aof-rewrite-min-size 64mb
635  
636 ################################ LUA SCRIPTING  ###############################
637  
638 # Max execution time of a Lua script in milliseconds.
639 #
640 # If the maximum execution time is reached Redis will log that a script is
641 # still in execution after the maximum allowed time and will start to
642 # reply to queries with an error.
643 #
644 # When a long running script exceed the maximum execution time only the
645 # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
646 # used to stop a script that did not yet called write commands. The second
647 # is the only way to shut down the server in the case a write commands was
648 # already issue by the script but the user don't want to wait for the natural
649 # termination of the script.
650 #
651 # Set it to 0 or a negative value for unlimited execution without warnings.
652 # LUA脚本的最大执行时间(单位是毫秒),默认5000毫秒,即5秒
653 # 如果LUA脚本执行超过这个限制,可以调用SCRIPT KILL和SHUTDOWN NOSAVE命令。
654 # SCRIPT KILL可以终止脚本执行
655 # SHUTDOWN NOSAVE关闭服务,防止LUA脚本的写操作发生
656 # 该值为0或者负数,表示没有限制时间
657 lua-time-limit 5000
658  
659 ################################## SLOW LOG ###################################
660  
661 # The Redis Slow Log is a system to log queries that exceeded a specified
662 # execution time. The execution time does not include the I/O operations
663 # like talking with the client, sending the reply and so forth,
664 # but just the time needed to actually execute the command (this is the only
665 # stage of command execution where the thread is blocked and can not serve
666 # other requests in the meantime).
667 # 
668 # You can configure the slow log with two parameters: one tells Redis
669 # what is the execution time, in microseconds, to exceed in order for the
670 # command to get logged, and the other parameter is the length of the
671 # slow log. When a new command is logged the oldest one is removed from the
672 # queue of logged commands.
673 # 记录执行比较慢的命令
674 # 执行比较慢仅仅是指命令的执行时间,不包括客户端的链接与响应等时间
675 # slowlog-log-slower-than 设定这个慢的时间,单位是微妙,即1000000表示1秒,0表示所有命令都记录,负数表示不记录
676 # slowlog-max-len表示记录的慢命令的个数,超过限制,则最早记录的命令会被移除
677 # 命令的长度没有限制,但是会消耗内存,用SLOWLOG RESET来收回这些消耗的内存
678  
679 # The following time is expressed in microseconds, so 1000000 is equivalent
680 # to one second. Note that a negative number disables the slow log, while
681 # a value of zero forces the logging of every command.
682 slowlog-log-slower-than 10000
683  
684 # There is no limit to this length. Just be aware that it will consume memory.
685 # You can reclaim memory used by the slow log with SLOWLOG RESET.
686 slowlog-max-len 128
687  
688 ################################ LATENCY MONITOR ##############################
689  
690 # The Redis latency monitoring subsystem samples different operations
691 # at runtime in order to collect data related to possible sources of
692 # latency of a Redis instance.
693 #
694 # Via the LATENCY command this information is available to the user that can
695 # print graphs and obtain reports.
696 #
697 # The system only logs operations that were performed in a time equal or
698 # greater than the amount of milliseconds specified via the
699 # latency-monitor-threshold configuration directive. When its value is set
700 # to zero, the latency monitor is turned off.
701 #
702 # By default latency monitoring is disabled since it is mostly not needed
703 # if you don't have latency issues, and collecting data has a performance
704 # impact, that while very small, can be measured under big load. Latency
705 # monitoring can easily be enalbed at runtime using the command
706 # "CONFIG SET latency-monitor-threshold " if needed.
707 # 延迟监控器
708 # redis延迟监控子系统在运行时,会抽样检测可能导致延迟的不同操作
709 # 通过LATENCY命令可以打印相关信息和报告, 命令如下(摘自源文件注释):
710 # LATENCY SAMPLES: return time-latency samples for the specified event.
711 # LATENCY LATEST: return the latest latency for all the events classes.
712 # LATENCY DOCTOR: returns an human readable analysis of instance latency.
713 # LATENCY GRAPH: provide an ASCII graph of the latency of the specified event.
714 # 
715 # 系统只记录超过设定值的操作,单位是毫秒,0表示禁用该功能
716 # 可以通过命令“CONFIG SET latency-monitor-threshold ” 直接设置而不需要重启redis
717  
718 latency-monitor-threshold 0
719  
720 ############################# Event notification ##############################
721  
722 # Redis can notify Pub/Sub clients about events happening in the key space.
723 # This feature is documented at http://redis.io/topics/keyspace-events
724 # 
725 # For instance if keyspace events notification is enabled, and a client
726 # performs a DEL operation on key "foo" stored in the Database 0, two
727 # messages will be published via Pub/Sub:
728 #
729 # PUBLISH __keyspace@0__:foo del
730 # PUBLISH __keyevent@0__:del foo
731 #
732 # It is possible to select the events that Redis will notify among a set
733 # of classes. Every class is identified by a single character:
734 #
735 #  K     Keyspace events, published with __keyspace@__ prefix.
736 #  E     Keyevent events, published with __keyevent@__ prefix.
737 #  g     Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
738 #  $     String commands
739 #  l     List commands
740 #  s     Set commands
741 #  h     Hash commands
742 #  z     Sorted set commands
743 #  x     Expired events (events generated every time a key expires)
744 #  e     Evicted events (events generated when a key is evicted for maxmemory)
745 #  A     Alias for g$lshzxe, so that the "AKE" string means all the events.
746 #
747 #  The "notify-keyspace-events" takes as argument a string that is composed
748 #  by zero or multiple characters. The empty string means that notifications
749 #  are disabled at all.
750 #
751 #  Example: to enable list and generic events, from the point of view of the
752 #           event name, use:
753 #
754 #  notify-keyspace-events Elg
755 #
756 #  Example 2: to get the stream of the expired keys subscribing to channel
757 #             name __keyevent@0__:expired use:
758 #
759 #  notify-keyspace-events Ex
760 #
761 #  By default all notifications are disabled because most users don't need
762 #  this feature and the feature has some overhead. Note that if you don't
763 #  specify at least one of K or E, no events will be delivered.
764 # 事件通知,当事件发生时,redis可以通知Pub/Sub客户端
765 # 空串表示禁用事件通知
766 # 注意:K和E至少要指定一个,否则不会有事件通知
767 notify-keyspace-events ""
768  
769 ############################### ADVANCED CONFIG ###############################
770  
771 # Hashes are encoded using a memory efficient data structure when they have a
772 # small number of entries, and the biggest entry does not exceed a given
773 # threshold. These thresholds can be configured using the following directives.
774 # 当hash数目比较少,并且最大元素没有超过给定值时,Hash使用比较有效的内存数据结构来存储。
775 # 即ziplist的结构(压缩的双向链表),参考:http://blog.csdn.net/benbendy1984/article/details/7796956
776 hash-max-ziplist-entries 512
777 hash-max-ziplist-value 64
778  
779 # Similarly to hashes, small lists are also encoded in a special way in order
780 # to save a lot of space. The special representation is only used when
781 # you are under the following limits:
782 # List配置同Hash
783 list-max-ziplist-entries 512
784 list-max-ziplist-value 64
785  
786 # Sets have a special encoding in just one case: when a set is composed
787 # of just strings that happens to be integers in radix 10 in the range
788 # of 64 bit signed integers.
789 # The following configuration setting sets the limit in the size of the
790 # set in order to use this special memory saving encoding.
791 # Sets的元素如果全部是整数(10进制),且为64位有符号整数,则采用特殊的编码方式。
792 # 其元素个数限制配置如下:
793 set-max-intset-entries 512
794  
795 # Similarly to hashes and lists, sorted sets are also specially encoded in
796 # order to save a lot of space. This encoding is only used when the length and
797 # elements of a sorted set are below the following limits:
798 # sorted set 同Hash和List
799 zset-max-ziplist-entries 128
800 zset-max-ziplist-value 64
801  
802 # HyperLogLog sparse representation bytes limit. The limit includes the
803 # 16 bytes header. When an HyperLogLog using the sparse representation crosses
804 # this limit, it is converted into the dense representation.
805 #
806 # A value greater than 16000 is totally useless, since at that point the
807 # dense representation is more memory efficient.
808 # 
809 # The suggested value is ~ 3000 in order to have the benefits of
810 # the space efficient encoding without slowing down too much PFADD,
811 # which is O(N) with the sparse encoding. The value can be raised to
812 # ~ 10000 when CPU is not a concern, but space is, and the data set is
813 # composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
814 # 关于HyperLogLog的介绍:http://www.redis.io/topics/data-types-intro#hyperloglogs
815 # HyperLogLog稀疏表示限制设置,如果其值大于16000,则仍然采用稠密表示,因为这时稠密表示更能有效使用内存
816 # 建议值为3000
817 hll-sparse-max-bytes 3000
818  
819 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
820 # order to help rehashing the main Redis hash table (the one mapping top-level
821 # keys to values). The hash table implementation Redis uses (see dict.c)
822 # performs a lazy rehashing: the more operation you run into a hash table
823 # that is rehashing, the more rehashing "steps" are performed, so if the
824 # server is idle the rehashing is never complete and some more memory is used
825 # by the hash table.
826 # 
827 # The default is to use this millisecond 10 times every second in order to
828 # active rehashing the main dictionaries, freeing memory when possible.
829 #
830 # If unsure:
831 # use "activerehashing no" if you have hard latency requirements and it is
832 # not a good thing in your environment that Redis can reply form time to time
833 # to queries with 2 milliseconds delay.
834 #
835 # use "activerehashing yes" if you don't have such hard requirements but
836 # want to free memory asap when possible.
837 # 每100毫秒,redis将用1毫秒的时间对Hash表进行重新Hash。
838 # 采用懒惰Hash方式:操作Hash越多,则重新Hash的可能越多,若根本就不操作Hash,则不会重新Hash
839 # 默认每秒10次重新hash主字典,释放可能释放的内存
840 # 重新hash会造成延迟,如果对延迟要求较高,则设为no,禁止重新hash。但可能会浪费很多内存
841 activerehashing yes
842  
843 # The client output buffer limits can be used to force disconnection of clients
844 # that are not reading data from the server fast enough for some reason (a
845 # common reason is that a Pub/Sub client can't consume messages as fast as the
846 # publisher can produce them).
847 #
848 # The limit can be set differently for the three different classes of clients:
849 #
850 # normal -> normal clients including MONITOR clients
851 # slave  -> slave clients
852 # pubsub -> clients subscribed to at least one pubsub channel or pattern
853 #
854 # The syntax of every client-output-buffer-limit directive is the following:
855 #
856 # 客户端输出缓冲区限制,当客户端从服务端的读取速度不够快时,则强制断开
857 # 三种不同的客户端类型:normal、salve、pubsub,语法如下:
858 # client-output-buffer-limit    
859 #
860 # A client is immediately disconnected once the hard limit is reached, or if
861 # the soft limit is reached and remains reached for the specified number of
862 # seconds (continuously).
863 # So for instance if the hard limit is 32 megabytes and the soft limit is
864 # 16 megabytes / 10 seconds, the client will get disconnected immediately
865 # if the size of the output buffers reach 32 megabytes, but will also get
866 # disconnected if the client reaches 16 megabytes and continuously overcomes
867 # the limit for 10 seconds.
868 #
869 # By default normal clients are not limited because they don't receive data
870 # without asking (in a push way), but just after a request, so only
871 # asynchronous clients may create a scenario where data is requested faster
872 # than it can read.
873 #
874 # Instead there is a default limit for pubsub and slave clients, since
875 # subscribers and slaves receive data in a push fashion.
876 #
877 # Both the hard or the soft limit can be disabled by setting them to zero.
878 # 当达到硬限制,或者达到软限制且持续了算限制秒数,则立即与客户端断开
879 # 限制设为0表示禁止该功能
880 # 普通用户默认不限制
881 client-output-buffer-limit normal 0 0 0
882 client-output-buffer-limit slave 256mb 64mb 60
883 client-output-buffer-limit pubsub 32mb 8mb 60
884  
885 # Redis calls an internal function to perform many background tasks, like
886 # closing connections of clients in timeout, purging expired keys that are
887 # never requested, and so forth.
888 #
889 # Not all tasks are performed with the same frequency, but Redis checks for
890 # tasks to perform accordingly to the specified "hz" value.
891 #
892 # By default "hz" is set to 10. Raising the value will use more CPU when
893 # Redis is idle, but at the same time will make Redis more responsive when
894 # there are many keys expiring at the same time, and timeouts may be
895 # handled with more precision.
896 #
897 # The range is between 1 and 500, however a value over 100 is usually not
898 # a good idea. Most users should use the default of 10 and raise this up to
899 # 100 only in environments where very low latency is required.
900 # redis调用内部函数执行的后台任务的频率
901 # 后台任务比如:清除过期数据、客户端超时链接等
902 # 默认为10,取值范围1~500,
903 # 对延迟要求很低的可以设置超过100以上
904 hz 10
905  
906 # When a child rewrites the AOF file, if the following option is enabled
907 # the file will be fsync-ed every 32 MB of data generated. This is useful
908 # in order to commit the file to the disk more incrementally and avoid
909 # big latency spikes.
910 # 当修改AOF文件时,该设置为yes,则每生成32MB的数据,就进行同步
911 aof-rewrite-incremental-fsync yes
View Code

 

3.设置Redis服务

配置systemctl管理Redis服务:

# 编辑文件
vim /usr/lib/systemd/system/redis.service

# 在redis.service文件中加入以下内容 并保存

##########################

[Unit]
Description=Redis-5.0.7-6379
After=network.target

[Service]
Type=forking
PIDfile=/var/run/redis-6379.pid
ExecStart=/usr/local/bin/redis-server /etc/redis/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

###########################

# 加载服务
systemctl daemon-reload

 

reids服务操作:

systemctl start redis  # 启动
systemctl stop redis  # 停止
systemctl restart redis  # 重启
systemctl status redis  # 查看状态
systemctl enable redis  # 开机启动
systemctl disable redis  # 取消开机启动

 

4.运行Redis

[root@centos-base system]# systemctl start redis
[root@centos-base system]# systemctl status redis
鈼[0m redis.service - Redis-5.0.7-6379
   Loaded: loaded (/usr/lib/systemd/system/redis.service; enabled; vendor preset: disabled)
   Active: active (running) since Sun 2020-01-05 15:19:46 CST; 4s ago
  Process: 27232 ExecStop=/bin/kill -s QUIT $MAINPID (code=exited, status=0/SUCCESS)
  Process: 27243 ExecStart=/usr/local/bin/redis-server /etc/redis/redis.conf (code=exited, status=0/SUCCESS)
 Main PID: 27244 (redis-server)
   CGroup: /system.slice/redis.service
           鈹斺攢27244 /usr/local/bin/redis-server 127.0.0.1:6379

Jan 05 15:19:46 centos-base systemd[1]: Starting Redis-5.0.7-6379...
Jan 05 15:19:46 centos-base systemd[1]: Started Redis-5.0.7-6379.

查看进程:

[root@centos-base system]# ps -ef | grep redis
root      27244      1  0 15:19 ?        00:00:00 /usr/local/bin/redis-server 127.0.0.1:6379
root      27251  17132  0 15:22 pts/0    00:00:00 grep --color=auto redis

 

六、Redis连接

当Redis安装好,并启动后台服务后,我们就可以使用客户端来使用redis数据库。

1.连接redis

如果连接本地redis:

[root@centos-base system]# redis-cli
127.0.0.1:6379> ping
PONG

直接使用redis-cli命令即可连接。

连接远程redis:

[root@centos-base redis-5.0.7]# redis-cli -h 192.168.1.181 -p 6379
192.168.1.181:6379> ping
PONG
192.168.1.181:6379>

 

这里注意: 

要想本地访问127.0.0.1:6379的话,则bind 127.0.0.1

如果想要同时提供给其他host远程访问192.168.1.181:6379的话,则配置bind 127.0.0.1 192.168.1.181

 

2.切换数据库

我们使用redis-cli连接redis的时候,默认连接的是第一个数据库,也就是index=0的数据库。

切换数据库命令:

[root@centos-base redis]# redis-cli
127.0.0.1:6379> select 1
OK
127.0.0.1:6379[1]> 

select 1表示切换到1号数据库(第二个)。

 

七、Redis数据类型和操作

1.redis的数据类型

如下图所示:

[NoSQL数据库] Redis基础_第2张图片

 

常用的数据类型有String、List、Hash、Set、sorted Set。

String:值为字符串类型。

List:值为一个列表。

Hash:值为多个KV对。

Set:值为一个集合,元素不重复。

Sorted Set:值为按某种规则排序的集合。

 

操作命令参考http://redis.cn/commands.html官方中文文档。

命令查询与参考http://doc.redisfans.com/

 

2.String数据操作

String类型的数据最Redis中最为基础和常见的数据存储类型。

在Redis中是二进制安全的,这意味着该类型可以存储任何格式的数据,如JEPG图片数据或JSON对象描述信息等。

在Redis中字符串类型的Value最大可容纳512M的内容。

 

查看数据库中(0~15某一个数据库)所有的数据:

[KEYS *]

127.0.0.1:6379> KEYS *
1) "age"
2) "name"

 

设置值:

[set key value]

set myname leo  # 当myname不存在时,则设置值为leo

修改值:

set myname jone  # myname存在,则修改其值为jone

设置值得过期时间:

[setex key Ns value]

setex myage 10 32  # 设置myage的值为32,过期时间为10s
127.0.0.1:6379> get myage   # 10s内获取值为32
"32"
127.0.0.1:6379> get myage  # 10s过后,获取值得空nil
(nil)

获取值:

[get key]

127.0.0.1:6379> get myname
"leokale"

 

一次设置多个值:

[mset key1 value1 key2 value2 key3 value3...]

# mset key1 value1 key2 value2 key3 value3 ...
mset myname leo myage 32 gender male

一次获取多个值:

[mget key1 key2 key3...]

127.0.0.1:6379> mget myname myage gender
1) "leokale"
2) "32"
3) "male"

 

追加数据:

[APPEND key value]

127.0.0.1:6379> get myname
"leo"
127.0.0.1:6379> APPEND myname kale
(integer) 7
127.0.0.1:6379> get myname
"leokale"

 

3.键命令(通用命令)

键命令主要用于通过键来操作数据,例如删除、是否存在、查看类型等。适用于所有数据类型。

 

删除数据:

[def key1 key2...]

127.0.0.1:6379> del gender  # 删除gender
(integer) 1
127.0.0.1:6379> get gender
(nil)

判断数据是否存在:

[exists key1 key2...]

127.0.0.1:6379> EXISTS myname myage  # 两个值都存在,返回2
(integer) 2
127.0.0.1:6379> EXISTS myname gender  # gender已被删除,返回1
(integer) 1
127.0.0.1:6379> EXISTS myname  # myname存在,返回1
(integer) 1

单独判断某个数据是否存在,则判断返回是否为1即可。

 

查看键对应值的数据类型:

[type key]

127.0.0.1:6379> type myname
string

 

为某个数据设置过期时间:

[expire key Ns]

127.0.0.1:6379> EXPIRE myage 5  # 设置myage的过期时间为5s
(integer) 1
127.0.0.1:6379> get myage  # 5s内值为32
"32"
127.0.0.1:6379> get myage  # 5s过后为nil
(nil)

 

查看过期时间还剩多少:

[ttl key]

127.0.0.1:6379> ttl myage  # 查看myage的过期时间还有多久,单位s
(integer) 42   #  剩42s过期

 

4.Hash数据操作

哈希对应的是多个键值对组成的集合。

设置单个值:

[hset key field value] field表示属性的key

127.0.0.1:6379> hset hset1 name leo  # 设置一个属性name,值为leo
(integer) 1
127.0.0.1:6379> hset hset1 age 32  # 设置另一个属性age,值为32
(integer) 1 

 

获取某个属性的值:

[hget key field]

127.0.0.1:6379> hget hset1 name
"leo"

 

一次设置多个属性:

[hmset key field1 value1 field2  value2...]

127.0.0.1:6379> hmset h2 name jone age 11 gender male
OK

一次获取多个属性的值:

[hmget key field1 field2...]

127.0.0.1:6379> hmget h2 name age gender  # 同时获取name age gender的值
1) "jone"
2) "11"
3) "male"

 

查看hash中有哪些field属性:

[hkeys key]

127.0.0.1:6379> hkeys h2  # 查看hash h2中有哪些属性
1) "name"
2) "age"
3) "gender"

获取hash中所有field对应的值:

[hvals key]

127.0.0.1:6379> hvals h2  # 获取hash h2中所有属性的值
1) "jone"
2) "11"
3) "male"

 

删除hash中某个属性:

[hdel key field]

127.0.0.1:6379> hdel h2 gender  # 删除h2中的gender属性
(integer) 1
127.0.0.1:6379> hkeys h2  # 查看h2中的属性,gender已删除
1) "name"
2) "age"

 

删除整个hash数据:

[del key]

127.0.0.1:6379> del hset1  # 删除hash数据hset1
(integer) 1

 

5.List数据操作

List中的元素类型为string,按照插入顺序排列。

 

从前面(左侧)插入数据:

[lpush key val1 val2 val3]

127.0.0.1:6379> lpush list1 a b c  # 从列表前面插入数据a b c
(integer) 3

查看列表中的数据:

[lrange key start end]

127.0.0.1:6379> lrange list1 0 2  # 查看index 0~2的数据
1) "c"
2) "b"
3) "a"

可以看出,lpush插入的数据,a最先插入,所以顺序是c b a。

查看列表所有元素:

[lrange key 0 -1]

127.0.0.1:6379> lrange list1 0 -1  # 查看index 0~2的数据
1) "c"
2) "b"
3) "a"

-1表示列表中的最后一个元素。

 

从后面(右侧)插入数据:

[rpush key val1 val2 val3...]

127.0.0.1:6379> rpush list1 0 1 2  # 从后面插入数据0 1 2
(integer) 6
127.0.0.1:6379> lrange list1 0 -1  # 查看list中的所有数据
1) "c"
2) "b"
3) "a"
4) "0"
5) "1"
6) "2"

 

在指定元素的前后插入数据:

[linsert key before val new_val]

[linsert key after val new_val]

127.0.0.1:6379> linsert list1 before a go  #在a的前面插入go
(integer) 7
127.0.0.1:6379> lrange list1 0 -1
1) "c"
2) "b"
3) "go"
4) "a"
5) "0"
6) "1"
7) "2"
127.0.0.1:6379> linsert list1 after go anywhere  # 在go的后面插入anywhere
(integer) 8 
127.0.0.1:6379> lrange list1 0 -1
1) "c"
2) "b"
3) "go"
4) "anywhere"
5) "a"
6) "0"
7) "1"
8) "2"

 

设置某个index位置的值:

[lset key index val]

127.0.0.1:6379> lset list1 2 hello  # 设置index=2的值
OK
127.0.0.1:6379> lrange list1 0 3
1) "c"
2) "b"
3) "hello"
4) "anywhere"

 

删除列表中的值:

[lrem key count val]

count>0:从前往后删除count个值为val的元素。

count<0:从后往前删除count个值为val的元素。

count=0:删除全部值为val的元素。

# count=2时
127.0.0.1:6379> rpush list2 a b a b a b a b
(integer) 8
127.0.0.1:6379> lrem list2 2 a  # 从前往后删除2个a
(integer) 2
127.0.0.1:6379> lrange list2 0 -1
1) "b"
2) "b"
3) "a"
4) "b"
5) "a"
6) "b"
127.0.0.1:6379> lrem list2 -2 b  # 从后往前删除2个b
(integer) 2
127.0.0.1:6379> lrange list2 0 -1
1) "b"
2) "b"
3) "a"
4) "a"
127.0.0.1:6379> lrem list2 0 a  # 删除所有a
(integer) 2
127.0.0.1:6379> lrange list2 0 -1
1) "b"
2) "b"

 

6.Set数据操作

Set集合无序的,元素不能重复,值得类型都是String。

 

向集合中添加数据:

[sadd key val1 val2 val3...]

127.0.0.1:6379> sadd set1 zhangsan lisi wangwu
(integer) 3

 

获取集合的所有数据:

[smembers key]

127.0.0.1:6379> SMEMBERS set1
1) "zhangsan"
2) "lisi"
3) "wangwu"

 

删除集合中的某些值:

[srem key val1 val2...]

127.0.0.1:6379> srem set1 lisi wangwu  # 删除lisi和wangwu
(integer) 2
127.0.0.1:6379> SMEMBERS set1
1) "zhangsan"

 

7.Zset数据操作

zset是有序的set集合,在zset中,会为每一个元素指定一个全职(double类型)。

 

向zset中添加元素:

[zadd key score1 val1 score2 val2 score3 val3...]

127.0.0.1:6379> zadd zset1 7 a1 8 a2 3 a3 1 a4
(integer) 4

a1的权重为7,a2为8,a3为3,a4为1。

 

获取zset中的值:

[zrange key 0 -1]  和List很像,可以用index来获取值,因为是有序的。

127.0.0.1:6379> zrange zset1 0 -1
1) "a4"
2) "a3"
3) "a1"
4) "a2"

 

按权值范围来获取值:

[zrangebyscore key min max]

127.0.0.1:6379> ZRANGEBYSCORE zset1 3 7  # 获取权值3-7的值
1) "a3"
2) "a1"

 

查看某值对应的权重:

[zscore key val]

127.0.0.1:6379> ZSCORE zset1 a2  # 查询值a2对应的权值
"8"

 

删除指定元素:

[zrem key val1 val2 val3...]

127.0.0.1:6379> zrem zset1 a2  # 删除值为a2的元素
(integer) 1

 

按权重范围删除:

[zremrangebyscore key min max]

127.0.0.1:6379> ZREMRANGEBYSCORE zset1 2 7  # 删除权重2-7的元素
(integer) 2

 

八、Python连接Redis

1.安装Redis包

pip install redis

 

2.连接Redis

import redis

# 远程连接redis,地址为192.168.1.181:6379,默认连接的数据库为0.通过db参数修改
sr = redis.Redis(host='192.168.1.181', port=6379, db=0)

 

九、Python操作Redis

##########################  String操作  #################################
# 设置值
res = sr.set("name", 'Zheng')
print(res)  # 返回True或False
# 修改值
res = sr.set("name", 'Leo')
print(res)  # 返回True或False
# 获取值
res = sr.get("name")
print(res)  # 返回值或None
# 删除
res = sr.delete("name")
print(res)  # 可以同时删除多个delete("key1","key2"),返回删除成功的个数

# 获取所有的key
res = sr.keys()
print(res)  # 返回key列表

 

=====

你可能感兴趣的:([NoSQL数据库] Redis基础)