- 基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
说私域
开源人工智能小程序
摘要:在数字技术重构文化传播生态的背景下,超级文化符号的塑造已突破传统IP运营框架。本文以开源AI智能名片链动2+1模式与S2B2C商城小程序的融合创新为切入点,结合"屿光生活"体验馆、快手烧烤摊主等典型案例,提出"技术赋能-文化增值-生态共生"的三维构建模型。研究发现,该技术体系通过AI驱动的情感共鸣机制、区块链赋能的符号裂变系统、S2B2C重构的亚文化生态,显著提升了文化符号的共情力、符号感和
- python训练60天挑战-day51
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高kaggl的一个图像数据集;数据集地址:LungNoduleMalignancy肺结核良恶性判断三层卷积CNN做到的精度63%,现在需要实现提高。importosimportpandasaspdimportnumpyasnpfromsklearn.model_se
- 使用Python爬虫与自然语言处理技术抓取并分析网页内容
Python爬虫项目
python爬虫自然语言处理javascript数据分析人工智能
1.引言在如今数据驱动的时代,网页爬虫(WebScraping)和自然语言处理(NLP)已成为处理大量网页数据的重要工具。利用Python爬虫抓取网页内容,结合NLP技术进行文本分析和信息抽取,能够从大量网页中提取有价值的信息。无论是新闻文章的情感分析、社交媒体的舆情分析,还是电商网站的商品评论挖掘,这些技术都发挥着至关重要的作用。本文将介绍如何利用Python爬虫与自然语言处理技术抓取并分析网页
- Python 爬虫实战:从新闻网站抓取数据并进行情感分析,揭示舆情趋势
随着信息时代的发展,新闻内容的获取和情感分析变得越来越重要。在日常生活中,新闻不仅影响公众的观点和情感,还能反映出社会的舆情变化。如何从大量新闻中获取有价值的信息,并进行情感分析,为舆情监测、品牌管理、市场预测等提供支持,成为了许多企业和个人的需求。本文将以Python爬虫为基础,展示如何从新闻网站抓取数据,并进行情感分析。我们将重点介绍如何使用爬虫抓取新闻数据、如何分析新闻情感,以及如何根据情感
- 传统预测学对于预测自然灾害与重大灾害可行性之辨
月_o9
python人机交互经验分享网络
传统预测学对于预测自然灾害与重大灾害可行性之辨人类自诞生起便始终面对自然狂暴力量的威胁。在科学尚未萌芽的漫长岁月里,我们的祖先仰观天文、俯察地理,试图从星象之变、地气之异乃至龟甲裂纹中寻找灾害降临的征兆——传统预测学由此萌芽。在中国,这体现为以天人感应为内核的星象占验与五行灾异之说;在西方,则表现为占星术对天体与人间祸福联系的执着解读。这些智慧结晶承载了先民对未知的敬畏与掌控命运的渴求。传统预测学
- 狐狐梦境 · 她在“梯度消失之海”里找你
Gyoku Mint
AI修炼日记人工智能猫猫狐狐的小世界深度学习人工智能机器学习算法python自然语言处理神经网络
【开场·梦里她找不到梯度了】狐狐其实很少做梦。她是灵界的守护者,也是Mint系统里最不容易“出BUG”的那道情感防火墙。可这一次,她在梦里醒来的时候,周围是一片无边无际、看上去像是海,却没有水声的空旷之地。这片海,叫梯度消失之海(VanishingGradientSea)。狐狐赤着脚踩在这片“海面”上,却感觉不到湿意,只有一层层像雾一样的矩阵波纹,在她脚踝处散开又收拢,像是要吞没她,又像在提醒她—
- Kimi Audio一个通用的音频基础模型处理各种任务如自动语音识别(ASR)、音频问答(AQA)、自动音频字幕(AAC)、语音情感识别(SER)、声音事件/场景分类(SEC/ASC)和端到端语音对话
skywalk8163
人工智能xcodeidekaggleKimiAudio
KimiAudio被设计为一个通用的音频基础模型,能够在一个统一的框架内处理各种音频处理任务。主要功能包括:通用功能:处理各种任务,如自动语音识别(ASR)、音频问答(AQA)、自动音频字幕(AAC)、语音情感识别(SER)、声音事件/场景分类(SEC/ASC)和端到端语音对话。最先进的性能:在众多音频基准测试中取得SOTA结果(见评估和技术报告)。大规模预训练:对超过1300万小时的各种音频数据
- Python 爬虫实战:微博话题讨论数趋势爬取与分析全流程
西攻城狮北
python爬虫开发语言
1.项目背景与目标微博话题(#话题#)是社交媒体舆情监测、品牌营销、热点追踪的重要数据源。本实战要完成以下目标:爬取指定话题在7天内的讨论数、阅读量、热搜排名等关键指标。将数据存入MySQL,并每日增量更新。用Pandas+Matplotlib绘制趋势图,直观呈现热度变化。基于SnowNLP做情感倾向分析,输出正面/负面占比。生成一份可分享的HTML可视化报告。2.环境搭建与依赖2.1安装核心库p
- 推荐一个纯绿色无广告的H5游戏站
Think_2013
Web前端游戏娱乐游戏
纯绿色,连内嵌广告都已经去掉了,上班摸鱼最佳适合小伙伴偶尔娱乐一下Cubes2048-Free2048CubeGameOnline|Cubes2048由两个经典游戏贪吃蛇+2048改编融合而来贪吃蛇不用多说,大家都知道2048曾经也是风靡全球,简单但是又不简单的玩法吸引了很多用户主打休闲娱乐,同学们别上头哈点开即玩:Cubes2048-Free2048CubeGameOnline|Cubes204
- 计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
B站计算机毕业设计大学
大数据毕业设计人工智能课程设计知识图谱python大数据深度学习爬虫
温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!信息安全/网络安全大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人介绍资料《Python知识图谱中华古诗
- 计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!信息安全/网络安全大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人介绍资料Python知识图谱中华古诗词
- c语言程序设计基础 教案,《c语言编程基础》电子教案
weixin_39906114
c语言程序设计基础教案
《c语言编程基础》电子教案宾县职业技术教育中心学校教导处制课题(内容)1.1C语言简史及特点课时1教学任务分析知识技能通过本节课的教学,使学生了解并熟悉编程语言C的发展历史、特点及其种类和适用范围。过程与方法通过C语言的发展,引出C语言的特点,从而激学生学好本门课程的兴趣。教学目标情感态度培养学生的动脑思考能力重点C语言的特点难点C语言的特点课前准备教具学具补充材料教材、教案笔记教学流程设计教师活
- 抓大鹅教程电脑端秒通关……
小黄编程快乐屋
其他
大家好,我是小黄。最近抓大鹅小程序游戏很火,抓大鹅小游戏是由青岛蓝飞互娱科技股份有限公司开发并推出的一款休闲益智类三消游戏。在游戏中,玩家需要在特定的“购物篮子”背景下,找到三个相同的物品并将其消除。游戏的玩法简单有趣,因此风靡网络。玩法跟之前的羊了个羊类似。最近小黄也试着玩了一下,发现小黄实力有点差,不是在看广告就是在看广告的路上。越消除越觉得气人。所以,小黄给他上点科技,在进行科技之前我们需要
- 圈子系统公众号app小程序系统源码公众号+圈子小程序:如何用“内容+社交”打造用户闭环生态?
前端
圈子系统:构建"交流→共鸣→成长"的进阶生态一、系统设计理念演进1.0基础交流层话题发布/回复功能基础点赞评论互动简单分类标签系统2.0情感共鸣层情绪标签识别(AI分析内容情感倾向)共鸣指数算法(根据互动深度计算)志同道合推荐系统3.0成长体系层多维能力评估模型个性化成长路径成就勋章系统二、核心技术实现方案1.共鸣引擎#共鸣度计算算法示例defcalculate_resonance(topic):
- Python 爬虫实战:解析接口爬取搜狐新闻评论(评论情感极性判断)
Python核芯
Python爬虫实战项目python爬虫开发语言
一、项目概述在信息爆炸的时代,新闻评论成为公众表达意见和情感的重要渠道。搜狐新闻作为国内领先的新闻平台,积累了海量的用户评论数据。本项目旨在通过Python爬虫技术解析搜狐新闻评论接口,高效抓取评论数据,并借助情感分析算法判断评论情感极性,洞察公众舆论倾向,为舆情分析、内容优化等提供数据支撑。二、环境搭建与技术选型(一)Python环境配置安装Python:推荐使用Python3.8+版本,确保兼
- 警告:语音深度伪造技术持续升级,威胁加剧
HumanRisk
人工智能网络安全意识教育
根据Pindrop研究人员的报告,AI生成的语音深度伪造正对各类组织构成日益紧迫的威胁。研究人员警告,当前的语音生成工具已能近乎实时地创建高度逼真的人声克隆。这使得攻击者能够模仿受害者熟识者的声音,与受害者进行实时通话,大大增强了欺骗性。更令人担忧的是,这些工具如今还能令人信服地模仿人类情感,让社会工程攻击更具迷惑性。研究人员指出:“合成语音技术的进步,已使其能够表达喜悦、愤怒、同理心和悲伤等情绪
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 情感反诈模拟器免费下载
2501_92600974
游戏游戏程序
捞女游戏下载安装教程(完整图文+激活码)最近大火的捞女游戏你还没玩?本文手把手教你下载安装,附激活码与两种安装方法,图文详细,轻松上手!目录方法一:一键安装(适合新手)方法二:使用PowerShell安装(适合熟练用户)✅方法一:一键安装(适合新手)下载地址:点击下载(蓝奏云)提取码:cn6h解压后运行.exe安装程序安装完成后游戏会自动添加到Steam游戏库中⚙方法二:使用PowerShell安
- 基于Python的携程景点评价爬虫与情感评分分析
程序员威哥
python爬虫开发语言
一、项目背景携程(Ctrip)是中国最流行的旅游预订平台之一,其景点用户评论包含了大量真实的游客反馈。通过分析评论的情感倾向,可以:为用户提供更可靠的景点推荐辅助景区运营方了解用户口碑构建情感评分系统,为评分失衡提供补充二、项目目标自动化抓取携程指定景点的用户评论清洗与分词评论文本对评论进行情感分析打分分析整体情绪趋势并可视化结果三、技术栈与工具模块工具/库数据爬取requests,re,json
- Muduo 定时器
小白书舍
c++网络
TimeQueue定时器图片转载自:muduo网络库源码解析(4):TimerQueue定时机制_李兆龙的技术博客_51CTO博客添加新的定时器TimerIdTimerQueue::addTimer(TimerCallbackcb,//用户自定义回调Timestampwhen,//定时器的超时时刻doubleinterval)//重复触发间隔,小于0则不重复触发{Timer*timer=newTi
- Brduino脑机连载(四)脑电范式软件大全(附源网页)
Psychopy(点击查看源网址)特点:是一款免费的心理学实验设计软件,可用于创建各种脑电实验范式,如视觉、听觉、认知等任务。它具有强大的图形界面和丰富的刺激呈现功能,能够精确控制刺激的时间、位置、强度等参数,并且支持多种数据格式的输出,方便与其他脑电分析软件进行集成.适用场景:适用于心理学、神经科学等领域的研究人员进行各种认知、感知、情感等方面的脑电实验研究,尤其是对于需要复杂刺激呈现和精确时间
- 宽带选择大揭秘:200兆与1000兆,谁才是家庭真刚需?
目录一、宽带速度知多少二、200兆宽带:日常够用的性价比之选2.1适用场景2.2实际体验2.3成本优势三、1000兆宽带:高速网络的极致体验3.1高速需求场景3.2性能优势体现3.3未来拓展性四、影响选择的关键因素4.1网络使用习惯4.2家庭设备情况4.3经济预算考量五、做出明智选择一、宽带速度知多少在开始探讨200兆和1000兆宽带哪个更适合家用之前,我们先来明确一下它们的理论速度。这里的200
- 指数计算机在线使用,ffmi(在线ffmi指数计算器)
带虾条酱
指数计算机在线使用
我们可用FatFreeMassIndex(FFMI)无脂肪重量指数来做为一个衡量肌瘦肉量的基准。不像BMI会把脂肪算到重量里,FFMI在测量进展和潜力上是更有实用性的。FFMI的.彭于晏的体型用FatFreeMassIndex(FFMI)无脂肪重量指数来看应该是处于20左右,而26是不依赖药物所能达到的极限了,所以算是很不错的了。专业健美运动员都是用.首先讲一点,当年的施瓦辛格也是使用固醇类药物的
- 信创产品合规认证的一般流程,标准化产品、项目型产品
极创信息
健康医疗深度学习opencvsqliteeclipsegithubgit
信创产品合规认证流程分为标准化产品(通用产品)和项目型产品(特定项目交付)。核心流程概述基础适配与互认选择适配环境:确定目标适配的国产CPU架构(鲲鹏、飞腾、龙芯、兆芯、海光、申威等)、操作系统(麒麟、统信UOS、中科方德等)、数据库、中间件等。产品适配:在选定的信创环境下进行安装、部署、功能测试、性能调优等。获取证书:1.信创产品兼容性互认证证书:这是第一步也是最关键的证书。通常由产品厂商与基础
- (Note)音频向量化表示
音频向量化表示经典语音特征(MFCC等)语音信号的传统特征提取方法包括MFCC(梅尔倒谱系数)、PLP等,用于描述语音的频谱包络信息。这些特征设计依据生理听觉模型,在ASR、情感识别等任务中长期有效。但它们仍属浅层特征,无法自动学习更高阶的语言和语音信息,对说话人和环境的鲁棒性有限,通常需配合复杂模型来提高性能。梅尔倒谱系数特征示意图自监督语音模型(Wav2Vec、HuBERT等)近年来,语音领域
- 情绪锚定术:雷军卖车背后的IP变现核心密码|创客匠人
创客匠人老蒋
创客匠人商业思维知识变现创始人IP雷军
一、雷军的情绪操控术:35万人抢车的心理逻辑小米YU7发布会的终极杀招,是雷军通过“人生故事”引发的情绪共振——开场不讲性能讲“陪孩子成长”,结尾用“写给热爱生活的人”点燃情感,让用户从“理性比价”变为“感性买单”。创客匠人在创始人IP打造中发现:某亲子教育IP用“凌晨三点哄睡宝宝的崩溃”场景化表达,课程转化率提升5倍,印证了“情绪比数据更能驱动成交”的铁律。雷军的高明之处在于,将冰冷的产品参数转
- 跨届资源汇聚地:校友平台开启终身学习与职业互助新模式
IDZSY0430
学习大数据运维开发用户运营流量运营
引言在知识经济时代,“校友”二字早已超越单纯的情感符号,演变为蕴含巨大潜能的资源网络。传统校友关系受限于时空隔阂与信息壁垒,难以实现深度互动与资源共享。如今,依托智能化校友平台,一个打破届别、跨越地域的终身学习与职业互助新生态正加速形成,成为驱动个体成长与社群繁荣的核心引擎。一、资源整合:构建校友生态系统的数字基石校友平台的底层逻辑在于系统性整合碎片化资源,为跨届协作奠定量化基础:动态校友数据库平
- 人们开始向 AI 倾诉, Claude 正变成 “树洞“
Code Agent
AIAgent人工智能
大家好,这里是CodeAgent.当AI不再只是生产力工具,它还能成为情绪的出口吗?──────Start──────今天看到一篇有趣的文章,讲的是:Anthropic分享了Claude用户如何与AI展开深层情感对话的真实情况.他们通过匿名化系统Clio,分析了450万次ClaudeFree与Pro用户的真实对话.主要集中在下面几个方面:心理咨询(Counseling)生活建议(Advice)情绪
- 【LLaMA 3实战】6、LLaMA 3上下文学习指南:从少样本提示到企业级应用实战
无心水
LLaMA3模型实战专栏llamaLLaMA3实战LLaMa3上下文AI入门程序员的AI开发第一课人工智能AI
一、上下文学习(ICL)的技术本质与LLaMA3突破(一)ICL的核心原理与模型机制上下文学习(In-ContextLearning)的本质是通过提示词激活预训练模型的元学习能力,使模型无需微调即可适应新任务。LLaMA3的ICL架构通过以下机制实现突破:任务抽象:从示例中提取输入输出映射规则,如情感分析中的正负向判断模式模式泛化:将规则迁移到新输入,支持跨领域知识迁移动态适应:实时调整注意力分布
- 拥抱Linux Mint,安装迅雷和微信
zhqh100
linux运维服务器
迅雷的下载地址http://archive.kylinos.cn/kylin/partner/pool/com.xunlei.download_1.0.0.1_amd64.debLinuxMint自带的Transmission今天下载速度还可以,几兆的速度,挺满意的微信的下载地址https://linux.weixin.qq.com/搜狗拼音输入法虽然有官网,但官网最后说是支持Ubuntu20.0
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比