mongodb


目录[-]

  • 测试机配置
  • mongodb
  • 分库前测试结果
  • 给常用查询的字段加索引
  • 分库
  • 添加replicaset集群

测试机配置

  • SAS 硬盘
  • 16GB内存
  • 千兆网
  • 8 cores cpu

mongodb

  • 版本: 2.2.3
  • replicaset: 3台物理机
  • driver:pymongo2.5.2(w=2,safe=True,use_greenlets)

分库前测试结果

之前有测试过mongodb的读写性能 对于单条数据比较小的应用场景 非常适合 读写的吞吐量很不错 但是我们的应用场景是单条数会超过1MB 实际测试下来的结果是写锁非常严重 吞吐量保持在20qps左右 但是mongodb的CPU占用率不到70% 内存占用量在40% - 50% 磁盘IO也未到瓶颈 mongostate 查看状态的时候 写锁的比例非常高

给常用查询的字段加索引

开始测试时 没有给查询的字段加索引 使用explain的结果如下:

view source
print ?
01 db.users.find({'uid':'123456789'}).explain()
02 {
03 "cursor" : "BasicCursor",
04 "isMultiKey" : false,
05 "n" : 0,
06 "nscannedObjects" : 2,
07 "nscanned" : 2,
08 "nscannedObjectsAllPlans" : 2,
09 "nscannedAllPlans" : 2,
10 "scanAndOrder" : false,
11 "indexOnly" : false,
12 "nYields" : 0,
13 "nChunkSkips" : 0,
14 "millis" : 9,
15 "indexBounds" : {},
16 }

在查询的时候 使用的是BasicCursor 没有对查询uid添加索引 导致查询时需要遍历所有的ns

添加索引db.users.ensureIndex({'uid':1})后 再看查询的解释

view source
print ?
01 db.users.find({'uid':'123456789'}).explain()
02 {
03 "cursor" : "BtreeCursor uid_1",
04 "isMultiKey" : false,
05 "n" : 0,
06 "nscannedObjects" : 0,
07 "nscanned" : 0,
08 "nscannedObjectsAllPlans" : 0,
09 "nscannedAllPlans" : 0,
10 "scanAndOrder" : false,
11 "indexOnly" : false,
12 "nYields" : 0,
13 "nChunkSkips" : 0,
14 "millis" : 0,
15 "indexBounds" : {
16 "uid" : [
17 [
18 "123456789",
19 "123456789"
20 ]
21 ]},
22 }

添加索引后 吞吐有一定的提升 但是非常有限 我们测试的主要场景是大量的更新操作 查看mongostat的结果 还是写锁严重

分库

mongodb在2.2后的写锁是数据库级别的 所以我们尝试着进行分库 在单个replicaset集群上部署多个数据库 然后进行测试 实际的测试结果为 写锁被分散到多个数据库上 但是local这个数据库的写锁比例突然上升了很多 能到120%+

查看local这个数据库 里面存的数据

view source
print ?
1 switched to db local
2 dds:PRIMARY> show collections;
3 me
4 oplog.rs
5 replset.minvalid
6 slaves
7 system.indexes
8 system.replset

上述collections中 me是mongodb的host信息 slaves里面存了secondary和oplog同步的信息 opslog.rs里面记录的是oplog 怀疑是oplog同步导致local写锁比例上升

添加replicaset集群

为了验证上述猜测 我们在测试的三台物理机上又搭建了一个replicaset 然后再进行测试 结果非常好 local写锁有明显下降 吞吐量提高到150qps