最初的Unity导航系统很不完善,只能静态烘焙场景图的可行走区域,而且必须在本地保存场景的NavMesh数据,难以运行时动态计算;这使得鲜有开发者愿意再尝试Unity内置的导航功能,转向了AStar寻路算法的研究。
但实际上AStar算法真的适合大多数开发情况且性能较优么?
了解过AStar算法的都知道,它是基于格子来遍历计算行走权重的,算法复杂度其实是相对较高的,受到格子密度,地图大小和路线长度的的影响较大。
AStar更适合的是策略性寻路,该算法更有利于找出最短路径的最优解,能够达到足够的精确性。
而Unity的NavMesh是用的拐角点算法,随便找一个场景烘焙一下便可得知,例如:
烘焙出来的NavMesh区域只在障碍物边缘与平面边缘存在顶点,而不会像AStar一样均匀的布满整个平面;如果是一个无任何障碍物的平面,那就只会有平面边缘的几个顶点,算法效率是相对较高的,并不会因为地图变大而有明显算法复杂度上的变化。
相反,NavMesh的缺点也正是AStar的优点,那就是难以保证寻路的最优解,更多的时候是用于AI能够更快计算出绕过障碍物朝向目标前进的路径。
对于场景不变的静态地图来说,Unity最初的NavMesh已经能够满足需求,但如果地图随机生成或障碍物的位置随时变化,此时静态NavMesh一下子就捉襟见肘了。
好在随着Unity版本的更新,关于动态烘焙的方法也已经能有效实现,这样无论是以怎样千变万化的方式生成的随机地图,随机地图在游戏中如何构建重组,都能动态刷新出NavMesh的可行走区域。
1 using UnityEngine; 2 using UnityEngine.AI; 3 using System.Collections.Generic; 4 5 // Tagging component for use with the LocalNavMeshBuilder 6 // Supports mesh-filter and terrain - can be extended to physics and/or primitives 7 [DefaultExecutionOrder(-200)] 8 public class NavMeshSourceTag : MonoBehaviour 9 { 10 // Global containers for all active mesh/terrain tags 11 public static Listm_Meshes = new List (); 12 public static List m_Terrains = new List (); 13 14 void OnEnable() 15 { 16 var m = GetComponent (); 17 if (m != null) 18 { 19 m_Meshes.Add(m); 20 } 21 22 var t = GetComponent (); 23 if (t != null) 24 { 25 m_Terrains.Add(t); 26 } 27 } 28 29 void OnDisable() 30 { 31 var m = GetComponent (); 32 if (m != null) 33 { 34 m_Meshes.Remove(m); 35 } 36 37 var t = GetComponent (); 38 if (t != null) 39 { 40 m_Terrains.Remove(t); 41 } 42 } 43 44 // Collect all the navmesh build sources for enabled objects tagged by this component 45 public static void Collect(ref List sources) 46 { 47 sources.Clear(); 48 49 for (var i = 0; i < m_Meshes.Count; ++i) 50 { 51 var mf = m_Meshes[i]; 52 if (mf == null) continue; 53 54 var m = mf.sharedMesh; 55 if (m == null) continue; 56 57 var s = new NavMeshBuildSource(); 58 s.shape = NavMeshBuildSourceShape.Mesh; 59 s.sourceObject = m; 60 s.transform = mf.transform.localToWorldMatrix; 61 s.area = 0; 62 sources.Add(s); 63 } 64 65 for (var i = 0; i < m_Terrains.Count; ++i) 66 { 67 var t = m_Terrains[i]; 68 if (t == null) continue; 69 70 var s = new NavMeshBuildSource(); 71 s.shape = NavMeshBuildSourceShape.Terrain; 72 s.sourceObject = t.terrainData; 73 // Terrain system only supports translation - so we pass translation only to back-end 74 s.transform = Matrix4x4.TRS(t.transform.position, Quaternion.identity, Vector3.one); 75 s.area = 0; 76 sources.Add(s); 77 } 78 } 79 }
NavMeshSourceTag类是为了收集需要录入烘焙列表的模型网格数据和地形数据,用的是一个全局的静态数据列表来存储,需要挂载在场景的网格物件上,标记哪些物件的网格在生成数据时需要考虑在内。
1 using UnityEngine; 2 using UnityEngine.AI; 3 using System.Collections; 4 using System.Collections.Generic; 5 using NavMeshBuilder = UnityEngine.AI.NavMeshBuilder; 6 7 // Build and update a localized navmesh from the sources marked by NavMeshSourceTag 8 [DefaultExecutionOrder(-102)] 9 public class LocalNavMeshBuilder : MonoBehaviour 10 { 11 // The center of the build 12 public Transform m_Tracked; 13 14 // The size of the build bounds 15 public Vector3 m_Size = new Vector3(80.0f, 20.0f, 80.0f); 16 17 NavMeshData m_NavMesh; 18 AsyncOperation m_Operation; 19 NavMeshDataInstance m_Instance; 20 Listm_Sources = new List (); 21 22 IEnumerator Start() 23 { 24 while (true) 25 { 26 UpdateNavMesh(true); 27 yield return m_Operation; 28 } 29 } 30 31 void OnEnable() 32 { 33 Bake(); 34 } 35 36 void OnDisable() 37 { 38 //Unload navmesh and clear handle 39 m_Instance.Remove(); 40 } 41 42 /// 43 /// 按范围动态更新NavMesh 44 /// 45 /// 是否异步加载 46 void UpdateNavMesh(bool asyncUpdate = false) 47 { 48 NavMeshSourceTag.Collect(ref m_Sources); 49 var defaultBuildSettings = NavMesh.GetSettingsByID(0); 50 var bounds = QuantizedBounds(); 51 52 if (asyncUpdate) 53 m_Operation = NavMeshBuilder.UpdateNavMeshDataAsync(m_NavMesh, defaultBuildSettings, m_Sources, bounds); 54 else 55 NavMeshBuilder.UpdateNavMeshData(m_NavMesh, defaultBuildSettings, m_Sources, bounds); 56 } 57 58 static Vector3 Quantize(Vector3 v, Vector3 quant) 59 { 60 float x = quant.x * Mathf.Floor(v.x / quant.x); 61 float y = quant.y * Mathf.Floor(v.y / quant.y); 62 float z = quant.z * Mathf.Floor(v.z / quant.z); 63 return new Vector3(x, y, z); 64 } 65 66 Bounds QuantizedBounds() 67 { 68 // Quantize the bounds to update only when theres a 10% change in size 69 var center = m_Tracked ? m_Tracked.position : transform.position; 70 return new Bounds(Quantize(center, 0.1f * m_Size), m_Size); 71 } 72 73 //选择物体时在Scene中绘制Bound区域 74 void OnDrawGizmosSelected() 75 { 76 if (m_NavMesh) 77 { 78 Gizmos.color = Color.green; 79 Gizmos.DrawWireCube(m_NavMesh.sourceBounds.center, m_NavMesh.sourceBounds.size); 80 } 81 82 Gizmos.color = Color.yellow; 83 var bounds = QuantizedBounds(); 84 Gizmos.DrawWireCube(bounds.center, bounds.size); 85 86 Gizmos.color = Color.green; 87 var center = m_Tracked ? m_Tracked.position : transform.position; 88 Gizmos.DrawWireCube(center, m_Size); 89 } 90 91 //动态烘焙NavMesh 92 public void Bake() 93 { 94 // Construct and add navmesh 95 m_NavMesh = new NavMeshData(); 96 m_Instance = NavMesh.AddNavMeshData(m_NavMesh); 97 if (m_Tracked == null) 98 m_Tracked = transform; 99 UpdateNavMesh(false); 100 } 101 }
将之前收集到的网格物件的源数据动态刷新生成NavMesh,用法示例:
1 using UnityEngine; 2 3 public class LocalNavMeshCtrl : MonoBehaviour 4 { 5 public LocalNavMeshBuilder Bulider; 6 public float Offse; 7 void Awake() 8 { 9 EventManager.AddListener(EnterRoomHanlder); 10 } 11 12 private void EnterRoomHanlder(EnterRoomEvent e) 13 { 14 if (Bulider != null) 15 { 16 var rooms = BattleUtils.MapMgr.Rooms; 17 if (rooms.ContainsKey(e.RoomIndex) && rooms[e.RoomIndex].RoomType == RoomType.Battle) 18 { 19 Bulider.m_Tracked = rooms[e.RoomIndex].transform; 20 var size = PTBattleMgr.CurRoomCtrl.Size; 21 Bulider.m_Size = new Vector3(size.x * 4 + Offse, 10, size.y * 4 + Offse); 22 } 23 } 24 } 25 26 private void OnDestroy() 27 { 28 EventManager.RemoveListener (EnterRoomHanlder); 29 } 30 }
例如进入某一房间或区域就按照该房间区域的大小进行NavMesh的动态烘焙,可以非常方便的改变烘焙的范围和中心点等,也可以考虑让该烘焙范围一直跟随玩家的Transform运动。
一个区域内的NavMesh动态烘焙完成后,很多AI可能需要在NavMesh中取随机点进行导航的目标点的设置或巡逻等,可以写一个扩展方法得到NavMesh的顶点数据,取任何一个三角内的点即可:
1 public static Vector3 GetNavMeshRandomPos(this GameObject obj) 2 { 3 NavMeshTriangulation navMeshData = NavMesh.CalculateTriangulation(); 4 5 int t = Random.Range(0, navMeshData.indices.Length - 3); 6 7 Vector3 point = Vector3.Lerp(navMeshData.vertices[navMeshData.indices[t]], navMeshData.vertices[navMeshData.indices[t + 1]], Random.value); 8 point = Vector3.Lerp(point, navMeshData.vertices[navMeshData.indices[t + 2]], Random.value); 9 10 return point; 11 }