python-复盘-廖神数据库学习

一、使用SQLite

SQLite是一种嵌入式数据库,它的数据库就是一个文件。由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成。
在使用SQLite前,我们先要搞清楚几个概念:

表是数据库中存放关系数据的集合,一个数据库里面通常都包含多个表,比如学生的表,班级的表,学校的表,等等。表和表之间通过外键关联

要操作关系数据库,首先需要连接到数据库,一个数据库连接称为Connection

连接到数据库后,需要打开游标,称之为Cursor,通过Cursor执行SQL语句,然后,获得执行结果。

Python定义了一套操作数据库的API接口,任何数据库要连接到Python,只需要提供符合Python标准的数据库驱动即可。

由于SQLite的驱动内置在Python标准库中,所以我们可以直接来操作SQLite数据库。

我们在Python交互式命令行实践一下:

# 导入SQLite驱动:
>>> import sqlite3
# 连接到SQLite数据库
# 数据库文件是test.db
# 如果文件不存在,会自动在当前目录创建:
>>> conn = sqlite3.connect('test.db')
# 创建一个Cursor:    # 光标,游标
>>> cursor = conn.cursor()
# 执行一条SQL语句,创建user表:
>>> cursor.execute('create table user (id varchar(20) primary key, name varchar(20))')      # varchar 可变长字符串,varchar(20)表示可存的内容大小,execute 履行执行

# 继续执行一条SQL语句,插入一条记录:
>>> cursor.execute('insert into user (id, name) values (\'1\', \'Michael\')')

# 通过rowcount获得插入的行数:
>>> cursor.rowcount
1
# 关闭Cursor:
>>> cursor.close()
# 提交事务:
>>> conn.commit()
# 关闭Connection:
>>> conn.close()

我们再试试查询记录:

>>> conn = sqlite3.connect('test.db')
>>> cursor = conn.cursor()
# 执行查询语句:
>>> cursor.execute('select * from user where id=?', ('1',))    #  * 表示将表格里所有的相关数据选出来 , ? 为占位符,对应python的 %s

# 获得查询结果集:
>>> values = cursor.fetchall()
>>> values
[('1', 'Michael')]
>>> cursor.close()
>>> conn.close()

使用Python的DB-API时,只要搞清楚ConnectionCursor对象,打开后一定记得关闭,就可以放心地使用。

使用Cursor对象执行insertupdatedelete语句时,执行结果由rowcount返回影响的行数,就可以拿到执行结果。

使用Cursor对象执行select语句时,通过featchall()可以拿到结果集。结果集是一个list,每个元素都是一个tuple,对应一行记录。

如果SQL语句带有参数,那么需要把参数按照位置传递给execute()方法,有几个?占位符就必须对应几个参数,例如:

cursor.execute('select * from user where name=? and pwd=?', ('abc', 'password'))

SQLite支持常见的标准SQL语句以及几种常见的数据类型。具体文档请参阅SQLite官方网站。

小结

在Python中操作数据库时,要先导入数据库对应的驱动,然后,通过Connection对象和Cursor对象操作数据。

要确保打开的Connection对象和Cursor对象都正确地被关闭,否则,资源就会泄露。

如何才能确保出错的情况下也关闭掉Connection对象和Cursor对象呢?请回忆try:...except:...finally:...的用法。

练习

在Sqlite中根据分数段查找指定的名字

# -*- coding: utf-8 -*-
import os, sqlite3
db_file = os.path.join(os.path.dirname(__file__), 'test.db')
if os.path.isfile(db_file):
    os.remove(db_file)

# 初始数据:
conn = sqlite3.connect(db_file)
cursor = conn.cursor()
cursor.execute('create table user(id varchar(20) primary key, name varchar(20), score int)')
cursor.execute(r"insert into user values ('A-001', 'Adam', 95)")
cursor.execute(r"insert into user values ('A-002', 'Bart', 62)")
cursor.execute(r"insert into user values ('A-003', 'Lisa', 78)")
cursor.close()
conn.commit()
conn.close()

def get_score_in(low, high):
    ' 返回指定分数区间的名字,按分数从低到高排序 '
    with sqlite3.connect(db_file) as conn:
        try:
            cursor = conn.cursor()
            cursor.execute('SELECT * FROM user WHERE score > ? AND score < ? ORDER BY score',(low,high))    # 筛选
            values = cursor.fetchall()
        finally:
            cursor.close()
    return values
if __name__=='__main__':
    r = get_score_in(60,100)
    print(r)


二、使用MySQL

我们演示如何连接到MySQL服务器的test数据库:

# 导入MySQL驱动:
>>> import mysql.connector
# 注意把password设为你的root口令:
>>> conn = mysql.connector.connect(user='root', password='password', database='test')
>>> cursor = conn.cursor()
# 创建user表:
>>> cursor.execute('create table user (id varchar(20) primary key, name varchar(20))')
# 插入一行记录,注意MySQL的占位符是%s:
>>> cursor.execute('insert into user (id, name) values (%s, %s)', ['1', 'Michael'])
>>> cursor.rowcount
1
# 提交事务:
>>> conn.commit()
>>> cursor.close()
# 运行查询:
>>> cursor = conn.cursor()
>>> cursor.execute('select * from user where id = %s', ('1',))
>>> values = cursor.fetchall()
>>> values
[('1', 'Michael')]
# 关闭Cursor和Connection:
>>> cursor.close()
True
>>> conn.close()

由于Python的DB-API定义都是通用的,所以,操作MySQL的数据库代码和SQLite类似。
注意:
执行INSERT等操作后要调用commit()提交事务;
MySQL的SQL占位符是%s。SQLite占位符是 ?


三、使用SQLAlchemy

数据库表是一个二维表,包含多行多列。把一个表的内容用Python的数据结构表示出来的话,可以用一个list表示多行,list的每一个元素是tuple,表示一行记录,比如,包含idnameuser表:

[
    ('1', 'Michael'),
    ('2', 'Bob'),
    ('3', 'Adam')
]

Python的DB-API返回的数据结构就是像上面这样表示的。

但是用tuple表示一行很难看出表的结构。如果把一个tuple用class实例来表示,就可以更容易地看出表的结构来:

class User(object):
    def __init__(self, id, name):
        self.id = id
        self.name = name

[
    User('1', 'Michael'),
    User('2', 'Bob'),
    User('3', 'Adam')
]

这就是传说中的ORM技术:Object-Relational Mapping,把关系数据库的表结构映射到对象上。是不是很简单?

但是由谁来做这个转换呢?所以ORM框架应运而生。

在Python中,最有名的ORM框架是SQLAlchemy。我们来看看SQLAlchemy的用法。

首先通过pip安装SQLAlchemy:

$ pip install sqlalchemy

然后,利用上次我们在MySQL的test数据库中创建的user表,用SQLAlchemy来试试:

第一步,导入SQLAlchemy,并初始化DBSession:

# 导入:
from sqlalchemy import Column, String, create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base

# 创建对象的基类:
Base = declarative_base()

# 定义User对象:
class User(Base):
    # 表的名字:
    __tablename__ = 'user'

    # 表的结构:
    id = Column(String(20), primary_key=True)
    name = Column(String(20))

# 初始化数据库连接:
engine = create_engine('mysql+mysqlconnector://root:password@localhost:3306/test')
# 创建DBSession类型:
DBSession = sessionmaker(bind=engine)

以上代码完成SQLAlchemy的初始化和具体每个表的class定义。如果有多个表,就继续定义其他class,例如School:

class School(Base):
    __tablename__ = 'school'
    id = ...
    name = ...

create_engine()用来初始化数据库连接。SQLAlchemy用一个字符串表示连接信息:

'mysql+mysqlconnector://root:password@localhost:3306/test'  # 对应下方
'数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'

你只需要根据需要替换掉用户名、口令等信息即可。

下面,我们看看如何向数据库表中添加一行记录。

由于有了ORM,我们向数据库表中添加一行记录,可以视为添加一个User对象:

# 创建session对象:
session = DBSession()
# 创建新User对象:
new_user = User(id='5', name='Bob')
# 添加到session:
session.add(new_user)
# 提交即保存到数据库:
session.commit()
# 关闭session:
session.close()

可见,关键是获取session,然后把对象添加到session,最后提交并关闭。DBSession对象可视为当前数据库连接。

如何从数据库表中查询数据呢?有了ORM,查询出来的可以不再是tuple,而是User对象。SQLAlchemy提供的查询接口如下:

# 创建Session:
session = DBSession()
# 创建Query查询,filter是where条件,最后调用one()返回唯一行,如果调用all()则返回所有行:
user = session.query(User).filter(User.id=='5').one()
# 打印类型和对象的name属性:
print('type:', type(user))
print('name:', user.name)
# 关闭Session:
session.close()

运行结果如下:

type: 
name: Bob

可见,ORM就是把数据库表的行与相应的对象建立关联,互相转换。

由于关系数据库的多个表还可以用外键实现一对多、多对多等关联,相应地,ORM框架也可以提供两个对象之间的一对多、多对多等功能。

例如,如果一个User拥有多个Book,就可以定义一对多关系如下:

class User(Base):
    __tablename__ = 'user'

    id = Column(String(20), primary_key=True)
    name = Column(String(20))
    # 一对多:
    books = relationship('Book')

class Book(Base):
    __tablename__ = 'book'

    id = Column(String(20), primary_key=True)
    name = Column(String(20))
    # “多”的一方的book表是通过外键关联到user表的:
    user_id = Column(String(20), ForeignKey('user.id'))

当我们查询一个User对象时,该对象的books属性将返回一个包含若干个Book对象的list。

小结

ORM框架的作用就是把数据库表的一行记录与一个对象互相做自动转换。
正确使用ORM的前提是了解关系数据库的原理。



python中cursor操作数据库

commit() 提交
rollback() 回滚

cursor用来执行命令的方法:

callproc(self, procname, args):用来执行存储过程,接收的参数为存储过程名和参数列表,返回值为受影响的行数

execute(self, query, args):执行单条sql语句,接收的参数为sql语句本身和使用的参数列表,返回值为受影响的行数

executemany(self, query, args):执行单挑sql语句,但是重复执行参数列表里的参数,返回值为受影响的行数

nextset(self):移动到下一个结果集

cursor用来接收返回值的方法:

fetchall(self):接收全部的返回结果行.

fetchmany(self, size=None):接收size条返回结果行.如果size的值大于返回的结果行的数量,则会返回cursor.arraysize条数据.

fetchone(self):返回一条结果行.

scroll(self, value, mode='relative'):移动指针到某一行.如果mode='relative',则表示从当前所在行移动value条,如果 mode='absolute',则表示从结果集的第一行移动value条.

你可能感兴趣的:(python-复盘-廖神数据库学习)