dubbo负载均衡是如何实现的?

dubbo负载均衡是如何实现的?_第1张图片

dubbo的负载均衡全部由AbstractLoadBalance的子类来实现

RandomLoadBalance 随机

在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

  1. 获取invoker的数量
  2. 获取第一个invoker的权重,并复制给firstWeight
  3. 循环invoker集合,把它们的权重全部相加,并复制给totalWeight,如果权重不相等,那么sameWeight为false
  4. 如果invoker集合的权重并不是全部相等的,那么获取一个随机数在1到totalWeight之间,赋值给offset属性
  5. 循环遍历invoker集合,获取权重并与offset相减,当offset减到小于零,那么就返回这个inovker
  6. 如果权重相等,那么直接在invoker集合里面取一个随机数返回
    @Override
    protected  Invoker doSelect(List> invokers, URL url, Invocation invocation) {
        int length = invokers.size(); // Number of invokers
        boolean sameWeight = true; // Every invoker has the same weight?
        int firstWeight = getWeight(invokers.get(0), invocation);
        int totalWeight = firstWeight; // The sum of weights
        for (int i = 1; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            totalWeight += weight; // Sum
            if (sameWeight && weight != firstWeight) {
                sameWeight = false;
            }
        }
        if (totalWeight > 0 && !sameWeight) {
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
            int offset = ThreadLocalRandom.current().nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < length; i++) {
                offset -= getWeight(invokers.get(i), invocation);
                if (offset < 0) {
                    return invokers.get(i);
                }
            }
        }
        // If all invokers have the same weight value or totalWeight=0, return evenly.
        return invokers.get(ThreadLocalRandom.current().nextInt(length));
    }

RoundRobinLoadBalance 轮询

存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

在老的版本上,dubbo会求出最大权重和最小权重,如果权重相等,那么就直接按取模的方式,每次取完后值加一;如果权重不相等,顺序根据权重分配。

在新的版本上,对这个类进行了重构。

  1. 从methodWeightMap这个实例中根据ServiceKey+MethodName的方式获取里面的一个map实例,如果没有则说明第一次进到该方法,则实例化一个放入到methodWeightMap中,并把获取到的实例命名为map
  2. 遍历所有的invokers
  3. 拿到当前的invoker的identifyString作为key,去map里获取weightedRoundRobin实例,如果map里没有则添加一个
  4. 如果weightedRoundRobin的权重和当前invoker的权重不同,说明权重变了,需要重新设置
  5. 获取当前invoker所对应的weightedRoundRobin实例中的current,并加上当前invoker的权重
  6. 设置weightedRoundRobin最后的更新时间
  7. maxCurrent一开始是设置的0,如果当前的weightedRoundRobin的current值大于maxCurrent则进行赋值
  8. 遍历完后会得到最大的权重的invoker的selectedInvoker和这个invoker所对应的weightedRoundRobin赋值给了selectedWRR,还有权重之和totalWeight
  9. 然后把selectedWRR里的current属性减去totalWeight,并返回selectedInvoker

这样看显然是不够清晰的,我们来举个例子:

假定有3台dubbo provider:

10.0.0.1:20884, weight=2
10.0.0.1:20886, weight=3
10.0.0.1:20888, weight=4

totalWeight=9;

那么第一次调用的时候:
10.0.0.1:20884, weight=2    selectedWRR -> current = 2
10.0.0.1:20886, weight=3    selectedWRR -> current = 3
10.0.0.1:20888, weight=4    selectedWRR -> current = 4
 
selectedInvoker-> 10.0.0.1:20888 
调用 selectedWRR.sel(totalWeight); 
10.0.0.1:20888, weight=4    selectedWRR -> current = -5
返回10.0.0.1:20888这个实例

那么第二次调用的时候:
10.0.0.1:20884, weight=2    selectedWRR -> current = 4
10.0.0.1:20886, weight=3    selectedWRR -> current = 6
10.0.0.1:20888, weight=4    selectedWRR -> current = -1

selectedInvoker-> 10.0.0.1:20886 
调用 selectedWRR.sel(totalWeight); 
10.0.0.1:20886 , weight=4   selectedWRR -> current = -3
返回10.0.0.1:20886这个实例

那么第三次调用的时候:
10.0.0.1:20884, weight=2    selectedWRR -> current = 6
10.0.0.1:20886, weight=3    selectedWRR -> current = 0
10.0.0.1:20888, weight=4    selectedWRR -> current = 3

selectedInvoker-> 10.0.0.1:20884
调用 selectedWRR.sel(totalWeight); 
10.0.0.1:20884, weight=2    selectedWRR -> current = -3
返回10.0.0.1:20884这个实例
    protected  Invoker doSelect(List> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        ConcurrentMap map = methodWeightMap.get(key);
        if (map == null) {
            methodWeightMap.putIfAbsent(key, new ConcurrentHashMap());
            map = methodWeightMap.get(key);
        }
        int totalWeight = 0;
        long maxCurrent = Long.MIN_VALUE;
        long now = System.currentTimeMillis();
        Invoker selectedInvoker = null;
        WeightedRoundRobin selectedWRR = null;
        for (Invoker invoker : invokers) {
            String identifyString = invoker.getUrl().toIdentityString();
            WeightedRoundRobin weightedRoundRobin = map.get(identifyString);
            int weight = getWeight(invoker, invocation);
            if (weight < 0) {
                weight = 0;
            }
            if (weightedRoundRobin == null) {
                weightedRoundRobin = new WeightedRoundRobin();
                weightedRoundRobin.setWeight(weight);
                map.putIfAbsent(identifyString, weightedRoundRobin);
                weightedRoundRobin = map.get(identifyString);
            }
            if (weight != weightedRoundRobin.getWeight()) {
                //weight changed
                weightedRoundRobin.setWeight(weight);
            }
            long cur = weightedRoundRobin.increaseCurrent();
            weightedRoundRobin.setLastUpdate(now);
            if (cur > maxCurrent) {
                maxCurrent = cur;
                selectedInvoker = invoker;
                selectedWRR = weightedRoundRobin;
            }
            totalWeight += weight;
        }
        if (!updateLock.get() && invokers.size() != map.size()) {
            if (updateLock.compareAndSet(false, true)) {
                try {
                    // copy -> modify -> update reference
                    ConcurrentMap newMap = new ConcurrentHashMap();
                    newMap.putAll(map);
                    Iterator> it = newMap.entrySet().iterator();
                    while (it.hasNext()) {
                        Entry item = it.next();
                        if (now - item.getValue().getLastUpdate() > RECYCLE_PERIOD) {
                            it.remove();
                        }
                    }
                    methodWeightMap.put(key, newMap);
                } finally {
                    updateLock.set(false);
                }
            }
        }
        if (selectedInvoker != null) {
            selectedWRR.sel(totalWeight);
            return selectedInvoker;
        }
        // should not happen here
        return invokers.get(0);
    }

LeastActiveLoadBalance 最少活跃调用数

使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

  1. 遍历所有的invoker
  2. 获取当前invoker的活跃数,调用的是RpcStatus的getStatus方法,过滤器里面会记录每个方法的活跃数
  3. 获取当前invoker的权重
  4. 如果是第一次进来或者是当前invoker的活跃数比最小的活跃数还小
  5. 那么把leastActive设置为当前invoker的活跃数,设置leastCount为1,leastIndexes数组的第一个位置设置为1,记录一下totalWeight和firstWeight
  6. 如果不满足第4点的条件,那么判断当前invoker的活跃数和最小的活跃数是否相等
  7. 如果满足第6点,那么把当前的权重加入到totalWeight中,并把leastIndexes数组中记录一下最小活跃数相同的下标;再看一下是否所有的权重相同
  8. 如果invoker集合中只有一个invoker活跃数是最小的,那么直接返回
  9. 如果权重不相等,随机权重后,判断在哪个 Invoker 的权重区间中
  10. 权重相等,直接随机选择 Invoker 即可

最小活跃数算法实现:
假定有3台dubbo provider:

10.0.0.1:20884, weight=2,active=2
10.0.0.1:20886, weight=3,active=4
10.0.0.1:20888, weight=4,active=3
active=2最小,且只有一个2,所以选择10.0.0.1:20884

假定有3台dubbo provider:

10.0.0.1:20884, weight=2,active=2
10.0.0.1:20886, weight=3,active=2
10.0.0.1:20888, weight=4,active=3
active=2最小,且有2个,所以从[10.0.0.1:20884,10.0.0.1:20886 ]中选择;
接下来的算法与随机算法类似:

假设offset=1(即random.nextInt(5)=1)
1-2=-1<0?是,所以选中 10.0.0.1:20884, weight=2
假设offset=4(即random.nextInt(5)=4)
4-2=2<0?否,这时候offset=2, 2-3<0?是,所以选中 10.0.0.1:20886, weight=3
 1: public class LeastActiveLoadBalance extends AbstractLoadBalance {
 2: 
 3:     public static final String NAME = "leastactive";
 4: 
 5:     private final Random random = new Random();
 6: 
 7:     @Override
 8:     protected  Invoker doSelect(List> invokers, URL url, Invocation invocation) {
 9:         int length = invokers.size(); // 总个数
10:         int leastActive = -1; // 最小的活跃数
11:         int leastCount = 0; // 相同最小活跃数的个数
12:         int[] leastIndexes = new int[length]; // 相同最小活跃数的下标
13:         int totalWeight = 0; // 总权重
14:         int firstWeight = 0; // 第一个权重,用于于计算是否相同
15:         boolean sameWeight = true; // 是否所有权重相同
16:         // 计算获得相同最小活跃数的数组和个数
17:         for (int i = 0; i < length; i++) {
18:             Invoker invoker = invokers.get(i);
19:             int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // 活跃数
20:             int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // 权重
21:             if (leastActive == -1 || active < leastActive) { // 发现更小的活跃数,重新开始
22:                 leastActive = active; // 记录最小活跃数
23:                 leastCount = 1; // 重新统计相同最小活跃数的个数
24:                 leastIndexes[0] = i; // 重新记录最小活跃数下标
25:                 totalWeight = weight; // 重新累计总权重
26:                 firstWeight = weight; // 记录第一个权重
27:                 sameWeight = true; // 还原权重相同标识
28:             } else if (active == leastActive) { // 累计相同最小的活跃数
29:                 leastIndexes[leastCount++] = i; // 累计相同最小活跃数下标
30:                 totalWeight += weight; // 累计总权重
31:                 // 判断所有权重是否一样
32:                 if (sameWeight && weight != firstWeight) {
33:                     sameWeight = false;
34:                 }
35:             }
36:         }
37:         // assert(leastCount > 0)
38:         if (leastCount == 1) {
39:             // 如果只有一个最小则直接返回
40:             return invokers.get(leastIndexes[0]);
41:         }
42:         if (!sameWeight && totalWeight > 0) {
43:             // 如果权重不相同且权重大于0则按总权重数随机
44:             int offsetWeight = random.nextInt(totalWeight);
45:             // 并确定随机值落在哪个片断上
46:             for (int i = 0; i < leastCount; i++) {
47:                 int leastIndex = leastIndexes[i];
48:                 offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
49:                 if (offsetWeight <= 0) {
50:                     return invokers.get(leastIndex);
51:                 }
52:             }
53:         }
54:         // 如果权重相同或权重为0则均等随机
55:         return invokers.get(leastIndexes[random.nextInt(leastCount)]);
56:     }
57: 
58: }

ConsistentHashLoadBalance 一致性 Hash

相同参数的请求总是发到同一提供者。当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

  1. 基于 invokers 集合,根据对象内存地址来计算定义哈希值
  2. 获得 ConsistentHashSelector 对象。若为空,或者定义哈希值变更(说明 invokers 集合发生变化),进行创建新的 ConsistentHashSelector 对象
  3. 调用ConsistentHashSelector对象的select方法
 1: public class ConsistentHashLoadBalance extends AbstractLoadBalance {
 2: 
 3:     /**
 4:      * 服务方法与一致性哈希选择器的映射
 5:      *
 6:      * KEY:serviceKey + "." + methodName
 7:      */
 8:     private final ConcurrentMap> selectors = new ConcurrentHashMap>();
 9: 
10:     @SuppressWarnings("unchecked")
11:     @Override
12:     protected  Invoker doSelect(List> invokers, URL url, Invocation invocation) {
13:         String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
14:         // 基于 invokers 集合,根据对象内存地址来计算定义哈希值
15:         int identityHashCode = System.identityHashCode(invokers);
16:         // 获得 ConsistentHashSelector 对象。若为空,或者定义哈希值变更(说明 invokers 集合发生变化),进行创建新的 ConsistentHashSelector 对象
17:         ConsistentHashSelector selector = (ConsistentHashSelector) selectors.get(key);
18:         if (selector == null || selector.identityHashCode != identityHashCode) {
19:             selectors.put(key, new ConsistentHashSelector(invokers, invocation.getMethodName(), identityHashCode));
20:             selector = (ConsistentHashSelector) selectors.get(key);
21:         }
22:         return selector.select(invocation);
23:     }
24: }

ConsistentHashSelector 一致性哈希选择器

ConsistentHashSelector ,是 ConsistentHashLoadBalance 的内部类,一致性哈希选择器,基于 Ketama 算法。

/**
 * 虚拟节点与 Invoker 的映射关系
 */
private final TreeMap> virtualInvokers;
/**
 * 每个Invoker 对应的虚拟节点数
 */
private final int replicaNumber;
/**
 * 定义哈希值
 */
private final int identityHashCode;
/**
 * 取值参数位置数组
 */
private final int[] argumentIndex;

  1: ConsistentHashSelector(List> invokers, String methodName, int identityHashCode) {
  2:     this.virtualInvokers = new TreeMap>();
  3:     // 设置 identityHashCode
  4:     this.identityHashCode = identityHashCode;
  5:     URL url = invokers.get(0).getUrl();
  6:     // 初始化 replicaNumber
  7:     this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
  8:     // 初始化 argumentIndex
  9:     String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
 10:     argumentIndex = new int[index.length];
 11:     for (int i = 0; i < index.length; i++) {
 12:         argumentIndex[i] = Integer.parseInt(index[i]);
 13:     }
 14:     // 初始化 virtualInvokers
 15:     for (Invoker invoker : invokers) {
 16:         String address = invoker.getUrl().getAddress();
 17:         // 每四个虚拟结点为一组,为什么这样?下面会说到
 18:         for (int i = 0; i < replicaNumber / 4; i++) {
 19:             // 这组虚拟结点得到惟一名称
 20:             byte[] digest = md5(address + i);
 21:             // Md5是一个16字节长度的数组,将16字节的数组每四个字节一组,分别对应一个虚拟结点,这就是为什么上面把虚拟结点四个划分一组的原因
 22:             for (int h = 0; h < 4; h++) {
 23:                 // 对于每四个字节,组成一个long值数值,做为这个虚拟节点的在环中的惟一key
 24:                 long m = hash(digest, h);
 25:                 virtualInvokers.put(m, invoker);
 26:             }
 27:         }
 28:     }
 29: }
public Invoker select(Invocation invocation) {
    // 基于方法参数,获得 KEY
    String key = toKey(invocation.getArguments());
    // 计算 MD5 值
    byte[] digest = md5(key);
    // 计算 KEY 值
    return selectForKey(hash(digest, 0));
}

private String toKey(Object[] args) {
    StringBuilder buf = new StringBuilder();
    for (int i : argumentIndex) {
        if (i >= 0 && i < args.length) {
            buf.append(args[i]);
        }
    }
    return buf.toString();
}

private Invoker selectForKey(long hash) {
    // 得到大于当前 key 的那个子 Map ,然后从中取出第一个 key ,就是大于且离它最近的那个 key
    Map.Entry> entry = virtualInvokers.tailMap(hash, true).firstEntry();
    // 不存在,则取 virtualInvokers 第一个
    if (entry == null) {
        entry = virtualInvokers.firstEntry();
    }
    // 存在,则返回
    return entry.getValue();
}

你可能感兴趣的:(dubbo负载均衡是如何实现的?)