- 配置阿里云yum源
小坏蛋至尊宝
笔记Linux阿里云云计算
配置阿里云yum源修改默认的yum仓库,把原有的移动到创建的目录里(踢出国外的yum源)#切换到/ect/yum.repos.d/目录下cd/etc/yum.repos.d/#新建repo目录mkdirrepo#把原有的移动到创建的目录里mv./*.repo./repo/配置yum源#找到阿里云的官方镜像源地址https://opsx.alibaba.com/mirror如果没有wget可以先yu
- 【保姆级】阿里云codeup配置Git的CI/CD步骤
CodeCaptain
阿里云GitLabDevOps阿里云gitci/cd
以下是通过阿里云CodeUp的Git仓库进行CI/CD配置的详细步骤,涵盖前端(Vue3)和后端(SpringBoot)项目的自动化打包,并将前端打包结果嵌入到Nginx的Docker镜像中,以及将后端打包的JAR文件拷贝至Docker指定目录的完整流程:前提条件阿里云账号:已注册并登录阿里云CodeUp。项目代码:前端(Vue3)和后端(SpringBoot)项目代码已托管到CodeUp仓库。D
- 阿里云国际站代理商:为什么边缘计算需要分布式防护?
聚搜云—服务器分享
阿里云边缘计算分布式
1.边缘计算的分布式特性边缘计算将数据处理和存储从集中式的云中心迁移到了靠近数据源的边缘节点,这些节点通常分布广泛且数量众多。这种分布式架构虽然带来了低延迟、高带宽和高可靠性的优势,但也增加了安全防护的复杂性。因为每个边缘节点都可能成为潜在的攻击目标,且攻击面随着节点数量的增加而扩大。2.安全风险的增加数据泄露风险:边缘节点处理和存储用户数据,如果这些节点的安全措施不足,数据可能会被窃取或泄露。物
- QEMU 中 x86_cpu_realizefn 到 ept_emulation_fault 的调用流程解析(macos)
inquisiter
数据库服务器linux
QEMU中x86_cpu_realizefn到ept_emulation_fault的调用流程解析在QEMU的x86虚拟化实现中,CPU的初始化与执行流程涉及多个关键函数,从CPU设备的最终初始化(x86_cpu_realizefn)到虚拟机监控程序(HVF)中处理EPT(扩展页表)缺页异常(ept_emulation_fault),以下是完整调用链的详细分析:1.x86_cpu_realizef
- 如何使用百度云Qianfan进行AI应用开发
dgay_hua
百度云人工智能云计算python
技术背景介绍百度云Qianfan是由百度公司提供的云服务,包含了云存储、文件管理、资源共享、以及第三方集成等功能。作为开发者,Qianfan支持多种AI应用开发组件,包括大语言模型(LLMs)、对话模型、嵌入模型和向量存储等。本文将重点介绍如何利用这些组件进行实际的AI应用开发。核心原理解析百度云Qianfan通过其丰富的API接口和云计算能力,为开发者提供了易于集成的AI开发环境。核心组件如Qi
- Docker国内设置镜像加速下载地址
黯然神伤888
dockerdocker
原先当我们配置好阿里云的镜像服务后,通过dockerpull拉取镜像很方便,但是随着阿里这方面的相关政策调整后,发现很多拉取镜像都出现了问题,无法正常拉取,自己构建镜像又嫌烦。正好在简书上看到有个老铁发了其他docker加速地址,试了下挺管用,就转载保存下分享给大家,如果使用阿里云镜像服务无法拉起镜像的话,可以试试下面的镜像地址1、目的国内的镜像很容易被屏蔽,导致dockerpull失败,需要手动
- 硅谷企业的大数据平台架构什么样?看看Twitter、Airbnb、Uber的实践
大数据v
分布式数据库大数据编程语言hadoop
导读:本文分析一下典型硅谷互联网企业的大数据平台架构。作者:彭锋宋文欣孙浩峰来源:大数据DT(ID:hzdashuju)01Twitter的大数据平台架构Twitter是最早一批推进数字化运营的硅谷企业之一,其公司运营和产品迭代的很多功能是由其底层的大数据平台提供的。图7-2所示为Twitter大数据平台的基本示意图。▲图7-2Twitter大数据平台架构Twitter的大数据平台开发比较早,很多
- vmware中创建qemu的嵌套虚拟化问题
格局视界
问题记录arm开发fpga开发嵌入式硬件
在qemu启动镜像中有enable-kvm参数时报错:CouldnotaccessKVMkernelmodule:Nosuchfileordirectoryqemu-system-x86_64:failedtoinitializekvm:Nosuchfileordirectory分析:问题发生场景为在虚拟机中嵌套使用虚拟机,因此不光物理机要支持虚拟化,同时虚拟机也要支持虚拟化,即嵌套虚拟化问题。解
- 【图像预处理】
瞬间记忆
深度学习python
(4条消息)图像预处理方法总结_AI强仔的博客-CSDN博客对图像进行预处理的一些常见方法包括:调整图像大小和分辨率,以便适应模型的输入要求。对图像进行裁剪或填充,以使其大小和比例符合要求。调整图像的亮度、对比度和饱和度等图像属性。进行图像平滑或锐化操作,以去除噪声或增强图像特征。进行图像归一化或标准化,以确保各个特征在相同的尺度上。应用数据增强技术,如旋转、平移、缩放、翻转等,以扩大数据集,提高
- 云原生技术的风口来了!!
Real Man★
云原生
云原生技术(Cloud-NativeTechnologies)是一种基于云计算架构设计和运行应用程序的方法,旨在充分利用云计算的弹性、可扩展性和敏捷性。它的核心思想是通过容器化、微服务、DevOps和持续交付等技术,构建高效、可靠且易于维护的应用系统。未来,云原生技术将继续演进,成为企业数字化转型的核心驱动力。云原生技术的核心组件容器化(Containerization):使用容器(如Docker
- 大数据学习(75)-大数据组件总结
viperrrrrrr
大数据impalayarnhdfshiveCDHmapreduce
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦一、CDHCDH(ClouderaDistributionIncludingApacheHadoop)是由Cloudera公司提供的一个集成了ApacheHadoop以及相关生态系统的发行版本。CDH是一个大数据平台,简化和加速了大数据处理分析的部署和管理。CDH提供Hadoop的
- 大数据点燃智能制造变革之火——从数据到价值的跃迁
Echo_Wish
大数据高阶实战秘籍大数据制造
大数据点燃智能制造变革之火——从数据到价值的跃迁在全球制造业向智能化转型的浪潮中,大数据已然成为点燃变革的关键火种。从车间到供应链,从设备到产品生命周期,制造业正通过大数据分析找到隐形的效率优化机会,打破传统生产模式的桎梏。作为Echo_Wish,今天我将和大家探讨大数据如何融入智能制造,助力实现生产效率和业务价值的双重飞跃。一、智能制造的核心诉求:数据驱动的决策与执行智能制造的目标是通过数据驱动
- Sqoop安装部署
愿与狸花过一生
大数据sqoophadoophive
ApacheSqoop简介Sqoop(SQL-to-Hadoop)是Apache开源项目,主要用于:将关系型数据库中的数据导入Hadoop分布式文件系统(HDFS)或相关组件(如Hive、HBase)。将Hadoop处理后的数据导出回关系型数据库。核心特性批量数据传输支持从数据库表到HDFS/Hive的全量或增量数据迁移。并行化处理基于MapReduce实现并行导入导出,提升大数据量场景的效率。自
- AI预测体彩排3新模型百十个定位预测+胆码预测+杀和尾+杀和值2025年3月21日第25弹
GIS小天
体彩排3人工智能机器学习彩票算法
前面由于工作原因停更了很长时间,停更期间很多彩友一直私信我何时恢复发布每日预测,目前手头上的项目已经基本收尾,接下来恢复发布。当然,也有很多朋友一直咨询3D超级助手开发的进度,在这里统一回复下。由于本人既精通编程+大数据分析,也热衷于彩票研究,所以很多彩友通过一些渠道找到了我。目前,加我的已有不少彩友,分成了3类人群:第一类:平时不懂数据分析,买彩全靠瞎猜乱蒙,这些朋友希望借助我的技术和方法来给他
- Zynq PL端IP核之AXI DMA
Mazy.v
fpga开发嵌入式硬件arm开发单片机
1.AXIDMA简介Zynq提供了两种DMA,一种是PS中的DMA控制器,通过GP口与PL端连接,另一种是PL中的AXIDMAIP核(软核),通过HP口与PS端连接。Zynq有4个HP接口,每一个HP接口都包含控制和数据FIFO,这些FIFO为大数据量突发传输提供缓冲,让HP接口成为理想的高速数据传输接口。AXIDMAIP内核在AXI4内存映射和AXI4StreamIP接口之间提供高带宽直接储存访
- 揭秘时空大数据:详细介绍、真实应用场景和数据示例解析
陈书予
GIS开发(时空大数据)前端大数据python时序数据库
时空大数据(SpatialBigData)是指利用空间环境和时间环境信息,以及数字技术,从多种来源获取的海量、动态的、多维的数据,对空间环境和时间环境进行实时监测,并基于复杂的数据分析和挖掘,获取有价值的信息。时空大数据示例:1)社会网络数据:Twitter、Facebook、Instagram等社交媒体上的海量数据,可以通过时间、空间、主题等来提取有价值的信息。2)遥感图像数据:通过遥感技术从卫
- python基于Django的旅游景点数据分析及可视化的设计与实现 7blk7
qq2295116502
pythondjango数据分析
目录项目介绍技术栈具体实现截图Scrapy爬虫框架关键技术和使用的工具环境等的说明解决的思路开发流程爬虫核心代码展示系统设计论文书写大纲详细视频演示源码获取项目介绍大数据分析是现下比较热门的词汇,通过分析之后可以得到更多深入且有价值的信息。现实的科技手段中,越来越多的应用都会涉及到大数据随着大数据时代的到来,数据挖掘、分析与应用成为多个行业的关键,本课题首先介绍了网络爬虫的基本概念以及技术实现方法
- 火山云未来能冲击国内第一梯队吗
苹果企业签名分发
服务器火山引擎
首先,得了解火山云目前的市场地位。火山云是字节跳动旗下的云服务,虽然字节在互联网领域很强,但云服务市场已经有阿里云、腾讯云、华为云这些巨头,还有百度云等。所以火山云现在可能还在第二梯队或者更后面。接下来要考虑市场竞争情况。国内云市场增长快,但竞争激烈。第一梯队的玩家有先发优势,技术积累和客户基础都很深厚。火山云作为后来者,可能需要通过差异化竞争来突破,比如结合字节的短视频、AI等技术优势,提供独特
- 存算一体与存算分离:架构设计的深度解析与实现方案
克里斯蒂亚诺罗纳尔多阿维罗
大数据数据库
随着数据量的不断增大和对计算能力的需求日益提高,存算一体作为一种新型架构设计理念,在大数据处理、云计算和人工智能等领域正逐步引起广泛关注。在深入探讨存算一体之前,我们需要先了解存储和计算的基本概念,以及存算分离和存算一体之间的区别。什么是存算一体?存算一体,顾名思义,是将数据存储与计算资源紧密结合,形成一个统一的架构。在这种架构下,存储和计算不仅在物理层面上结合,更在架构设计上深度融合。具体来说,
- 虚拟机如何扩容磁盘
克里斯蒂亚诺罗纳尔多阿维罗
运维linux服务器
在日常的虚拟化环境中,虚拟机的磁盘空间不足是一个常见的问题。当虚拟机磁盘空间不够用时,扩容磁盘是一个常见的解决方案。本文将详细介绍如何在虚拟机中扩容磁盘,包含操作步骤,并解释在扩容过程中为什么可以直接删除原有分区。步骤1:扩容虚拟机磁盘首先,我们需要在虚拟化平台上扩展虚拟机的磁盘大小。以下是两种常见虚拟化平台(VMware和VirtualBox)扩容磁盘的步骤:VMware打开VMware管理控制
- LakeHouse湖仓一体成为下一站灯塔,数仓、数据湖架构即将退出群聊
科杰科技
大数据数据仓库
摘要:当前的大数据技术应用趋势表明,客户对单一的数据湖和数仓架构并不满意。近年来几乎所有的数据仓库都增加了对Parquet和ORC格式的外部表支持,这使数仓用户可以从相同的SQL引擎查询数据湖表,但它不会使数据湖表更易于管理,也不会消除仓库中数据的ETL复杂性、陈旧性和高级分析挑战。KeenDataLakeHouse(湖仓一体)作为新一代大数据技术架构,将逐渐取代单一数据湖和数仓架构,成为大数据架
- SpringBoot整合阿里云、腾讯云、minio、百度云、华为云、天翼云、金山云、七牛云、移动云、网易数帆等等有关于S3协议下文分布式对象存储接口
java初学者分享
阿里云腾讯云华为云
前提:在可运行的SpringBoot的项目内引用以下JAR包整个工具的代码都在Gitee或者Github地址内gitee:solomon-parent:这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、reids、Mqtt、S3协议的文件服务器、mongodbgithub:GitHub-ZeroNing/solomon-parent:这个项目主要是总结了工作上遇到
- 使用 openapi-generator-cli 生成代码,以 3GPP TS29518_Namf_Communication 为例
波格斯特
问题备忘开发语言
使用openapi-generator-cli生成代码,以3GPPTS29518_Namf_Communication为例安装openapi-generator-cli(前提有安装Java11以上)#使用阿里云镜像Invoke-WebRequest-OutFileopenapi-generator-cli.jarhttps://maven.aliyun.com/repository/public/
- vpc网络的原理
会探索的小学生
网络
一、VPC的基本概念和功能VPC是一个专有的云上私有网络,允许用户在公共云上配置和管理一个逻辑隔离的网络区域。用户可以自定义IP地址范围、创建子网、配置路由表和网络网关。VPC提供了类似于传统数据中心的安全和可配置的私有网络空间,同时又具备云计算的弹性和可扩展性二、VPC的关键组件和技术细节vSwitch:交换机,组成专有网络的基础网络设备,用于连接不同的云资源。vRouter:路由器,作
- Docker下载,包含Win、Mac
码码哈哈0.0
实用工具docker容器运维
介绍Docker是一种开源的容器化平台,通过操作系统级虚拟化技术实现应用的快速开发、部署和运行。以下从多个维度对Docker进行详细介绍:一、Docker的核心概念与功能容器化技术Docker利用Linux内核的容器隔离技术(如Cgroups和Namespace),将应用及其依赖打包为轻量级、可移植的容器。容器与虚拟机不同,它无需模拟完整操作系统,而是共享主机内核,因此启动更快、资源占用更低。核心
- 数据让农业更聪明——用大数据激活田间地头
Echo_Wish
大数据大数据
数据让农业更聪明——用大数据激活田间地头在农业领域,随着人口增长和气候变化的影响,如何提升生产力始终是个关键话题。大数据,这个曾经只属于科技领域的概念,如今已悄然进入田间地头。今天,我以Echo_Wish的视角,和大家聊聊大数据如何赋能农业生产力,帮农民在阳光下也能掌握“科技的钥匙”。认识农业中的大数据什么是农业中的“大数据”?简单来说,就是收集和分析有关土地、气候、作物、病虫害以及市场需求等方面
- yum install locate出现Error: Unable to find match: locate解决方案
爱编程的喵喵
Linux解决方案linuxlocateyum解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了yuminstalllocate出现
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 从 0 到 1 构建 Python 分布式爬虫,实现搜索引擎全攻略
七七知享
Pythonpython分布式爬虫搜索引擎算法程序人生网络爬虫
从0到1构建Python分布式爬虫,实现搜索引擎全攻略在大数据与信息爆炸的时代,搜索引擎已然成为人们获取信息的关键入口。你是否好奇,像百度、谷歌这般强大的搜索引擎,背后是如何精准且高效地抓取海量网页数据的?本文将带你一探究竟,以Python为工具,打造属于自己的分布式爬虫,进而搭建一个简易搜索引擎,完整呈现从底层代码编写到系统搭建的全过程。通过本文的实践,我们成功打造了Python分布式爬虫,并以
- 第三十篇 维度建模:从理论到落地的企业级实践
随缘而动,随遇而安
数据库sql数据仓库大数据数据库架构
目录一、维度建模核心理论体系1.1Kimball方法论四大支柱1.2关键概念对比矩阵二、四步建模法全流程解析2.1选择业务过程(以电商为例)2.2声明原子粒度(订单案例)2.3维度设计规范时间维度(含财年逻辑)SCDType2完整实现(Hudi)2.4事实表类型与设计三、企业级建模实战:电商用户分析3.1业务矩阵分析3.2模型实现代码四、高级建模技巧4.1多星型模式关联4.2大数据场景优化五、性能
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不