NLPIR数据挖掘让望“数”兴叹变成驱动引擎

  数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。

  数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。

  数据挖掘(Data Mining),要从存放在数据库,数据仓库或其他信息库中的大量的数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。数据挖掘,在人工智能领域,习惯上又称为数据库中知识发现(Knowledge Discovery in Database, KDD), 也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程以下三个阶段组成:(1) 数据准备,(2)数据挖掘,(3) 结果表达和解释。数据挖掘可以与用户或知识库交互。

  北京理工大学大数据搜索与挖掘实验室张华平主任研发的NLPIR大数据语义智能分析技术是满足大数据挖掘对语法、词法和语义的综合应用。NLPIR大数据语义智能分析平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。

  NLPIR大数据语义智能分析平台主要有精准采集、文档转化、新词发现、批量分词、语言统计、文本聚类、文本分类、摘要实体、智能过滤、情感分析、文档去重、全文检索、编码转换等十余项功能模块,平台提供了客户端工具,云服务与二次开发接口等多种产品使用形式。各个中间件API可以无缝地融合到客户的各类复杂应用系统之中,可兼容Windows,Linux, Android,Maemo5, FreeBSD等不同操作系统平台,可以供Java,Python,C,C#等各类开发语言使用。

  数据挖掘技术本身就是当前数据技术发展的新领域,文本挖掘则发展历史更短。传统的信息检索技术对于海量数据的处理并不尽如人意,文本挖掘便日益重要起来,可见文本挖掘技术是从信息抽取以及相关技术领域中慢慢演化而成的。在信息管理领域,综合应用数据挖掘技术和人工智能技术,获取用户知识、文献知识等各类知识,将是实现知识检索和知识管理发展的必经之路。

你可能感兴趣的:(NLPIR数据挖掘让望“数”兴叹变成驱动引擎)