- 嵌入式开发之STM32学习笔记day06
小程同学>o<
嵌入式学习之STM32stm32学习笔记
基于STM32F103C8T6的开发实践——从入门到精通011.引言STM32系列微控制器是STMicroelectronics推出的一款高性能、低功耗的32位微控制器,广泛应用于嵌入式系统中。STM32F103C8T6是其中非常受欢迎的一款,凭借其强大的性能、丰富的外设接口和低廉的价格,成为了开发者的首选之一。本文将通过实例,详细介绍如何基于STM32F103C8T6进行开发,并带领读者完成从简
- ## centos7搭建nfs高可用共享存储
weixin_45674361
高可用部署linux服务器centosnfs运维
centos7搭建nfs双机热备的高可用共享存储本文通过使用keepalived+nfs+rsync,解决了主从服务器双向同步和客户端挂载失效的问题,实现了nfs文件系统双机热备。名称IP地址客户端192.168.1.1服务端服务器1192.168.1.100服务端服务器2192.168.1.200实施步骤keepalived部署在192.168.1.100和192.168.1.200上执行安装依
- 前端缓存接口数据
jjjjjjjjj¢
笔记前端
在前端缓存接口数据时,可以结合浏览器缓存策略、前端存储(localStorage、sessionStorage、IndexedDB)、内存缓存(变量存储)、ServiceWorker等方式,选择适合的方案。使用浏览器HTTP缓存(推荐,依赖后端支持)如果接口数据不会频繁变化,可以使用HTTP缓存策略(强缓存+协商缓存),减少不必要的请求。后端设置Cache-Control在接口响应头中,服务器可以
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- linux系统命令——权限
why—空空
linux服务器运维
一、有哪些权限读(r)——对应数字4写(w)——对应数字2执行(x)——对应数字1二、权限及数字的对应4对应r--2对应-w-1对应--x5对应r-x6对应rw-7对应rwx三、文件的基本属性如图:①中如果是"一"表示文件类型为文件;如果是"d"表示文件类型是文件夹;如果是"l"表示文件类型为链接②表示文件属主(即谁创建的文件)的权限③中表示文件属主所属组(即文件属主所在的组)中的用户的权限④表示
- 机器学习中输入输出Tokens的概念详解
爱吃土豆的程序员
机器学习基础机器学习人工智能Tokens
随着深度学习技术的快速发展,大语言模型(LargeLanguageModels,LLMs)已经成为自然语言处理(NLP)领域的一个热点研究方向。这些模型不仅能够生成高质量的文本,还能在多种任务中展现出卓越的表现,比如机器翻译、问答系统、文本摘要等。在大语言模型的工作流程中,Tokens的概念扮演着至关重要的角色。本文将详细介绍大语言模型如何使用Tokens,以及如何计算Tokens的数量。什么是T
- Github开源库Xpopup代码阅读
月亮下的小草屋
github开源库代码阅读android
前言很久没写点东西了,在家闲着考了个驾照,花了一个半月,中国的驾考真的是没眼看,刚拿到驾照当天就被疫情封闭在家,直接封了一个多月,人都麻了,再来一次估计直接过年了,最近刚开始干点活。Xpopup是我非常喜欢的一个Github开源库,一直在用,我在Xpopup2.x版本的时候看过一遍它的代码,现在已经更新到3.x版本了,这两天也没啥事,又重新看了一遍,Xpopup的代码还是很容易阅读的,有兴趣的话可
- 基于Gradio实现的增删改查(CRUD)模板系统设计方案
大霸王龙
pythongradio
基于Gradio实现的增删改查(CRUD)模板系统设计方案,结合了交互界面优化与数据持久化方案,支持本地JSON存储和动态界面更新:一、系统架构设计数据存储层采用JSON文件实现数据持久化(data.json)数据结构示例:{"items":[{"id":1,"name":"示例项目","category":"测试","status":"进行中"}]}界面交互层使用gr.Blocks实现多组件布局
- 【GPT入门】第24课 langfuse介绍
*星星之火*
大模型gpt
【GPT入门】第24课langfuse介绍1.langfuse概念与作用2.代码3.页面效果4.设计模式1.装饰器模式2.上下文管理模式1.langfuse概念与作用Langfuse是一款专为大规模语言模型(LLM)应用开发设计的开源平台。其作用主要包括以下几个方面:提升开发效率:通过消除LLM应用构建与运维的复杂性,让开发者、运维团队及产品经理能更专注于核心开发与迭代优化,减少在监控与优化方面的
- 【GPT入门】第20课 langchain的function calling 初步体验
*星星之火*
大模型gptlangchainpython
【GPT入门】第20课langchain的functioncalling初步体验1.langchain的functioncalling非常简洁2.代码3.执行结果:1.langchain的functioncalling非常简洁在方法名说明方法用途和参数作用增加@tool标签langchain方法自动把@tool转为方法定义,后续方法调用都很简洁下面代码用支持单函数与多函数调用,自己体验一下quer
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 泰克AFG1022这么强大的功能,你还没有了解么?
思迈18086111968
科技
多种波形生成:支持生成多种标准波形,如正弦波、方波、三角波、脉冲波、锯齿波、噪声波等,还能生成50种常用的任意波形,满足不同测试场景需求。高精度输出:具有14位垂直分辨率,可提供高分辨率的波形输出,确保信号的精确度;频率分辨率达1μHz,能满足对不同频率信号的精确输出要求。多模式运行:支持连续模式、扫描模式、突发模式和调制模式。连续模式可连续输出选定波形;扫描模式能在一定频率范围内进行扫描输出;突
- 【数学基础】第十三课:参数估计
x-jeff
机器学习必备的数学基础机器学习
1.参数估计参数估计是统计推断的一种。根据从总体中抽取的随机样本来估计总体分布中未知参数的过程。从估计形式看,可分为:点估计。区间估计。1.1.参数估计和假设检验参数估计和假设检验是统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,但推断的角度不同。参数估计讨论的是用样本统计量估计总体参数的方法,总体参数在估计前是未知的。而在假设检验中,则是先对总体参数值提出一个假设,然后利用样本信息去
- 【深度学习基础】第二十四课:softmax函数的导数
x-jeff
深度学习基础深度学习人工智能
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.softmax函数softmax函数详解。2.softmax函数的导数假设神经网络输出层的激活函数为softmax函数,用以解决多分类问题。在反向传播时,就需要计算softmax函数的导数,这也就是本文着重介绍的内容。我们只需关注输出层即可,其余层和之前介绍的二分类模型一样,不再赘述。我们先考虑只有一个样本的情况
- 一个简单的日志类Logger
qinfen123456
单片机嵌入式硬件c++学习笔记开发语言
实现一个C++简单日志类,具备以下特性:日志文件命名采用文件名前缀加上日期的格式,方便管理与识别。对单个日志文件大小进行限制,当文件大小达到20MB时,自动开启新的日志文件。具备过期文件清理机制,自动删除保留时间超过365天的日志文件,节省存储空间。该日志类是线程安全的,能够在多线程环境下稳定运行,避免日志记录冲突。支持使用format格式进行日志记录,方便灵活输出不同格式的日志信息。自动创建子目
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- versal架构简介:Sec I Introduction
妮蔻mega
versal架构简介fpga
1.SoCHardwareOverviewAMD的SoC(系统级芯片)具有广泛的功能,适用于需要可扩展处理能力、集成功能单元和可扩展可编程逻辑的高端应用,并且可以在正常系统操作期间动态配置和重新配置。SoC架构包括一组丰富的集成硬件组件和许多用户可编程设计选项,适用于许多系统级解决方案。每个设备都包含一个处理系统、可编程逻辑、平台管理控制器以及各种集成的硬件子系统和外设。处理系统和可编程逻辑可以选
- 基于多向量检索器的多模态RAG实现:用于表格、文本和图像
lichunericli
人工智能自然语言处理
原文地址:Multi-VectorRetrieverforRAGontables,text,andimages2023年10月20日概括跨不同数据类型(图像、文本、表格)的无缝问答是RAG追求的目标之一。我们将发布threenewcookbooks,展示在包含混合内容类型的文档上使用RAG的多向量检索器。这些cookbooks还提出了一些将多模态LLM与多向量检索器配对以解锁图像上的RAG的想法。
- redis有哪几种持久化方式
杏花春雨江南
redisredis数据库缓存
Redis提供了两种持久化方式:RDB(RedisDatabase)和AOF(Append-OnlyFile)。它们各有优缺点,适用于不同的场景。以下是它们的原理、优缺点以及如何选择的建议:1.RDB(RedisDatabase)原理:RDB是Redis的快照持久化方式。Redis会定期将内存中的数据生成一个二进制快照文件(.rdb),并保存到磁盘。可以通过配置save参数设置触发快照的条件(如s
- Hystrix 实现限流\降级\熔断
杏花春雨江南
java开发那些事儿hystrixjava开发语言
Hystrix是一个强大的库,用于处理分布式系统中的延迟和容错问题。它提供了限流、降级和熔断等功能。下面是一个完整的Java示例,展示如何使用Hystrix实现限流、降级和熔断。1.添加依赖在pom.xml中添加Hystrix的依赖:xml复制com.netflix.hystrixhystrix-core1.5.18运行HTML2.创建Hystrix命令创建一个继承自HystrixCommand的
- 【.NET 6】RabbitMQ延迟消息指南
人生短几个秋
.netcorerabbitmq.net
背景最近遇到一个比较特殊需求,需要修改一个的RabbitMQ消费者,以实现在消费某种特定的类型消息时,延迟1小时再处理,几个需要注意的点:延迟是以小时为单位不是所有消息都延迟消费,只延迟特定类型的消息只在第一次消费时延迟1小时,容错机制产生的重新消费(也即消息消费失败,多次进入延迟队列重试),则不再延迟1小时消费者消费过程中可能会重启考虑到这几点,我们需要一个标识以及持久化,不能简单使用Threa
- DIFFERENTIAL TRANSFORMER
UnknownBody
LLMDaily深度学习人工智能transformer
本文是LLM系列文章,针对《DIFFERENTIALTRANSFORMER》的翻译。差分Transformer摘要1引言2差分Transformer3实验4结论摘要Transformer倾向于将注意力过度分配到无关的上下文中。在这项工作中,我们引入了DIFFTransformer,它在消除噪声的同时增强了对相关上下文的关注。具体而言,差分注意力机制将注意力得分计算为两个单独的softmax注意力图
- 学习Web3.0需要具备哪些基础知识?
alankuo
人工智能人工智能
学习Web3.0需要具备以下基础知识:一、计算机科学基础1.编程知识-了解至少一种编程语言,如Python、JavaScript等。这将有助于理解Web3.0应用程序的开发和智能合约的编写。-熟悉编程概念,如变量、数据类型、控制结构、函数等。2.数据结构和算法-掌握常见的数据结构,如数组、链表、栈、队列、树、图等,以及它们的操作和应用。-了解基本的算法,如排序、搜索、递归等,以及它们的时间和空间复
- 音视频缓存数学模型
锋风Fengfeng
安卓Android应用开发相关音视频缓存
2024年8月的笔记音视频缓存数学模型-Wesley’sBlog播放器作为消费者,缓存作为生产者。进入缓冲一次设消费者速率为v1,生产者为v2,视频长度为l,x为生产者至少距离消费者多远才能保证在播完视频前两者重合。实际上就是一个追及问题。v1t=v2t+x,即l=v2*l/v1+x,因为播放器速度是1,继续简化得x=l(1-v2)如果v2大于1,即满足消费者需求时,可以流畅播放。设l是一部45分
- LLM-PowerHouse: 一站式大型语言模型定制训练与推理指南
Nifc666
语言模型人工智能自然语言处理whisperlangchaingpt开源软件
LLM-PowerHouse:解锁大型语言模型的潜力在人工智能和自然语言处理领域,大型语言模型(LargeLanguageModels,LLMs)正在掀起一场革命。随着GPT、BERT等模型的出现,LLMs展现出了惊人的能力,可以执行各种复杂的语言任务。然而,如何有效地训练和使用这些强大的模型仍然是一个挑战。针对这一需求,GitHub上的LLM-PowerHouse项目应运而生,为开发者、研究人员
- 深入理解C++编程:从内存管理到多态与算法实现
嵌入式Jerry
C++c++算法开发语言
C++是一门功能强大的编程语言,广泛应用于系统编程、游戏开发和高性能计算等领域。本文将通过一系列经典问题,深入探讨C++的核心知识点,包括内存管理、多态(结合函数重载与覆盖)、多线程、TCP/IP模型、软链接与硬链接的区别,以及常见算法实现。每个知识点都配有详细的代码示例和解释,帮助你更好地理解和掌握。1.内存管理:内存泄露与检测什么是内存泄露?内存泄露是指程序在动态分配内存后,未能正确释放已不再
- 7、标准库的string的常见使用
周Echo周
STLc++开发语言算法数据结构推荐算法leetcode蓝桥杯
一、了解string其实不完全算STL库中的。在C++中,string是标准库提供的用于处理动态字符序列的类(位于头文件),相比C风格的字符数组(char[]或char*),string提供更安全、更便捷的操作。使用的头文件#include二、初始化stringname;//创建一个空的stringstringname("数据");//创建一个字符串值为“数据”的stringstringname=
- PyTorch中,将`DataLoader`加载的数据高效传输到GPU
大霸王龙
pytorch人工智能python
一、数据加载到GPU的核心步骤数据预处理与张量转换若原始数据为NumPy数组或Python列表,需先转换为PyTorch张量:X_tensor=torch.from_numpy(X).float()#转换为浮点张量y_tensor=torch.from_numpy(y).long()#分类任务常用长整型显式指定设备:通过.to(device)将数据移至GPU(需提前定义device对象):devi
- 输入:0.5元/百万tokens(缓存命中)或2元(未命中) 输出:8元/百万tokens
杏花春雨江南
缓存
这句话描述了一种定价模型,通常用于云计算、API服务或数据处理服务中,根据资源使用情况(如缓存命中与否)来收费。以下是对这句话的详细解释:1.关键术语解释Tokens:在自然语言处理(NLP)或数据处理领域,Token通常指文本的最小单位(如一个单词或一个字符)。在这里,Tokens是计费的单位。缓存命中(CacheHit):当请求的数据已经在缓存中时,称为缓存命中。缓存命中通常意味着更快的响应速
- 【sklearn 01】人工智能概述
@金色海岸
人工智能sklearnpython
一、人工智能,机器学习,深度学习人工智能指由人类制造出的具有智能的机器。这是一个非常大的范围,长远目标是让机器实现人工智能,但目前我们仍处在非常初始的阶段,甚至不能称为智能机器学习是指通过数据训练出能完成一定功能的模型,是实现人工智能的手段之一,也是目前最主流的人工智能实现方法深度学习则是机器学习的分支,超过8层的神经网络模型就叫深度学习,深度即层数。深度学习目前在语音、图像等领域取得很好的效果
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置