前言:因为GIL的限制,python的线程是无法真正意义上并行的。相对于异步编程,其性能可以说不是一个等量级的。为什么我们还要学习多线程编程呢,虽然说异步编程好处多,但编程也较为复杂,逻辑不容易理解,学习成本和维护成本都比较高。毕竟我们大部分人还是适应同步编码的,除非一些需要高性能处理的地方采用异步。
首先普及下进程和线程的概念:
进程:进程是操作系统资源分配的基本单位。
线程:线程是任务调度和执行的基本单位。
一个应用程序至少一个进程,一个进程至少一个线程。
两者区别:同一进程内的线程共享本进程的资源如内存、I/O、cpu等,但是进程之间的资源是独立的。
一、多线程
python 可以通过 thread 或 threading 模块实现多线程,threading 相比 thread 提供了更高阶、更全面的线程管理。我们下文主要以 threading 模块介绍多线程的基本用法。
import threading import time class thread(threading.Thread): def __init__(self, threadname): threading.Thread.__init__(self, name='线程' + threadname) def run(self): print('%s:Now timestamp is %s'%(self.name,time.time())) threads = [] for a in range(int(5)): # 线程个数 threads.append(thread(str(a))) for t in threads: # 开启线程 t.start() for t in threads: # 阻塞线程 t.join() print('END')
输出:
线程3:Now timestamp is 1557386184.7574518
线程2:Now timestamp is 1557386184.7574518
线程0:Now timestamp is 1557386184.7574518
线程1:Now timestamp is 1557386184.7574518
线程4:Now timestamp is 1557386184.7582724
END
start() 方法开启子线程。运行多次 start() 方法代表开启多个子线程。
join() 方法用来阻塞主线程,等待子线程执行完成。举个例子,主线程A创建了子线程B,并使用了 join() 方法,主线程A在 join() 处就被阻塞了,等待子线程B完成后,主线程A才能执行 print('END')。如果没有使用 join() 方法,主线程A创建子线程B后,不会等待子线程B,直接执行 print('END'),如下:
import threading import time class thread(threading.Thread): def __init__(self, threadname): threading.Thread.__init__(self, name='线程' + threadname) def run(self): time.sleep(1) print('%s:Now timestamp is %s'%(self.name,time.time())) threads = [] for a in range(int(5)): # 线程个数 threads.append(thread(str(a))) for t in threads: # 开启线程 t.start() # for t in threads: # 阻塞线程 # t.join() print('END')
输出:
END
线程0:Now timestamp is 1557386321.376941
线程3:Now timestamp is 1557386321.377937
线程1:Now timestamp is 1557386321.377937
线程2:Now timestamp is 1557386321.377937
线程4:Now timestamp is 1557386321.377937
二、线程之间的通信
1.threading.Lock()
如果多个线程对某一资源同时进行修改,可能会存在不可预知的情况。为了修改数据的正确性,需要把这个资源锁住,只允许线程依次排队进去获取这个资源。当线程A操作完后,释放锁,线程B才能进入。如下脚本是开启多个线程修改变量的值,但输出结果每次都不一样。
import threading money = 0 def Order(n): global money money = money + n money = money - n class thread(threading.Thread): def __init__(self, threadname): threading.Thread.__init__(self, name='线程' + threadname) self.threadname = int(threadname) def run(self): for i in range(1000000): Order(self.threadname) t1 = thread('1') t2 = thread('5') t1.start() t2.start() t1.join() t2.join() print(money)
接下来我们用 threading.Lock() 锁住这个变量,等操作完再释放这个锁。lock.acquire() 给资源加一把锁,对资源处理完成之后,lock.release() 再释放锁。以下脚本执行结果都是一样的,但速度会变慢,因为线程只能一个个的通过。
import threading money = 0 def Order(n): global money money = money + n money = money - n class thread(threading.Thread): def __init__(self, threadname): threading.Thread.__init__(self, name='线程' + threadname) self.threadname = int(threadname) def run(self): for i in range(1000000): lock.acquire() Order(self.threadname) lock.release() # print('%s:Now timestamp is %s'%(self.name,time.time())) lock = threading.Lock() t1 = thread('1') t2 = thread('5') t1.start() t2.start() t1.join() t2.join() print(money)
2.threading.Rlock()
用法和 threading Lock() 一致,区别是 threading.Rlock() 允许多次锁资源,acquire() 和 release() 必须成对出现,也就是说加了几把锁就得释放几把锁。
lock = threading.Lock() # 死锁 lock.acquire() lock.acquire() print('...') lock.release() lock.release() rlock = threading.RLock() # 同一线程内不会阻塞线程 rlock.acquire() rlock.acquire() print('...') rlock.release() rlock.release()
3.threading.Condition()
threading.Condition() 可以理解为更加高级的锁,比 Lock 和 Rlock 的用法更高级,能处理一些复杂的线程同步问题。threading.Condition() 创建一把资源锁(默认是Rlock),提供 acquire() 和 release() 方法,用法和 Rlock 一致。此外 Condition 还提供 wait()、Notify() 和 NotifyAll() 方法。
wait():线程挂起,直到收到一个 Notify() 通知或者超时(可选参数),wait() 必须在线程得到 Rlock 后才能使用。
Notify() :在线程挂起的时候,发送一个通知,让 wait() 等待线程继续运行,Notify() 也必须在线程得到 Rlock 后才能使用。 Notify(n=1),最多唤醒 n 个线程。
NotifyAll() :在线程挂起的时候,发送通知,让所有 wait() 阻塞的线程都继续运行。
举例说明下 Condition() 使用
import threading,time def TestA(): cond.acquire() print('李白:看见一个敌人,请求支援') cond.wait() print('李白:好的') cond.notify() cond.release() def TestB(): time.sleep(2) cond.acquire() print('亚瑟:等我...') cond.notify() cond.wait() print('亚瑟:我到了,发起冲锋...') if __name__=='__main__': cond = threading.Condition() testA = threading.Thread(target=TestA) testB = threading.Thread(target=TestB) testA.start() testB.start() testA.join() testB.join()
输出
李白:看见一个敌人,请求支援
亚瑟:等我...
李白:好的
亚瑟:我到了,发起冲锋...
4.threading.Event()
threading.Event() 原理是在线程中立了一个 Flag ,默认值是 False ,当一个或多个线程遇到 event.wait() 方法时阻塞,直到 Flag 值 变为 True 。threading.Event() 通常用来实现线程之间的通信,使一个线程等待其他线程的通知 ,把 Event 传递到线程对象中。
event.wait() :阻塞线程,直到 Flag 值变为 True
event.set() :设置 Flag 值为 True
event.clear() :修改 Flag 值为 False
event.isSet() : 仅当 Flag 值为 True 时返回
下面这个例子,主线程启动子线程后 sleap 2秒,子线程因为 event.wait() 被阻塞。当主线程醒来后执行 event.set() ,子线程才继续运行,两者输出时间差 2s。
import threading import datetime,time class thread(threading.Thread): def __init__(self, threadname): threading.Thread.__init__(self, name='线程' + threadname) self.threadname = int(threadname) def run(self): event.wait() print('子线程运行时间:%s'%datetime.datetime.now()) if __name__ == '__main__': event = threading.Event() t1 = thread('0') #启动子线程 t1.start() print('主线程运行时间:%s'%datetime.datetime.now()) time.sleep(2) # Flag设置成True event.set() t1.join()
输出
主线程运行时间:2019-05-30 15:51:49.690872
子线程运行时间:2019-05-30 15:51:51.691523
5.其他方法
threading.active_count():返回当前存活的线程对象的数量
threading.current_thread():返回当前线程对象
threading.enumerate():返回当前所有线程对象的列表
threading.get_ident():返回线程pid
threading.main_thread():返回主线程对象
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。