[Keras] Keras面向小数据集的图像分类(retrain&fine-tine)

这篇文章主要参考:

  • Building powerful image classification models using very little data

其中文翻译有:

  • keras面向小数据集的图像分类(VGG-16基础上fine-tune)实现(附代码)

相关的博客有:

  • keras系列︱图像多分类训练与利用bottleneck features进行微调(三)
  • keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完美案例(五)

说重点,在Keras中直接调用VGG / Inception_v3模型的时候出现了一点点问题,然后我使用 keras面向小数据集的图像分类(VGG-16基础上fine-tune)实现(附代码)中的源码Fine-tuning跑了一遍仍然有问题:

ValueError: The shape of the input to "Flatten" is not fully defined (got (None, None, 512). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model

主要出在 Flatten层,没有指定输入。
源码很短,如下:

"""
This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
- put the cat pictures index 1000-1400 in data/validation/cats
- put the dogs pictures index 12500-13499 in data/train/dogs
- put the dog pictures index 13500-13900 in data/validation/dogs
So that we have 1000 training examples for each class, and 400 validation examples for each class.
In summary, this is our directory structure:
data/
    train/
        dogs/
            dog001.jpg
            dog002.jpg
            ...
        cats/
            cat001.jpg
            cat002.jpg
            ...
    validation/
        dogs/
            dog001.jpg
            dog002.jpg
            ...
        cats/
            cat001.jpg
            cat002.jpg
            ...
"""

from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense

# path to the model weights files.
weights_path = '../keras/examples/vgg16_weights.h5'
top_model_weights_path = 'fc_model.h5'
# dimensions of our images.
img_width, img_height = 150, 150

train_data_dir = 'cats_and_dogs_small/train'
validation_data_dir = 'cats_and_dogs_small/validation'
nb_train_samples = 2000
nb_validation_samples = 800
epochs = 50
batch_size = 16

# build the VGG16 network
model = applications.VGG16(weights='imagenet', include_top=False)
print('Model loaded.')

# build a classifier model to put on top of the convolutional model
top_model = Sequential()
top_model.add(Flatten(input_shape=model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(1, activation='sigmoid'))

# note that it is necessary to start with a fully-trained
# classifier, including the top classifier,
# in order to successfully do fine-tuning
top_model.load_weights(top_model_weights_path)

# add the model on top of the convolutional base
model.add(top_model)

# set the first 25 layers (up to the last conv block)
# to non-trainable (weights will not be updated)
for layer in model.layers[:25]:
    layer.trainable = False

# compile the model with a SGD/momentum optimizer
# and a very slow learning rate.
model.compile(loss='binary_crossentropy',
              optimizer=optimizers.SGD(lr=1e-4, momentum=0.9),
              metrics=['accuracy'])

# prepare data augmentation configuration
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_height, img_width),
    batch_size=batch_size,
    class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_height, img_width),
    batch_size=batch_size,
    class_mode='binary')

# fine-tune the model
model.fit_generator(
    train_generator,
    samples_per_epoch=nb_train_samples,
    epochs=epochs,
    validation_data=validation_generator,
    nb_val_samples=nb_validation_samples)

但是,代码中已经明确指定了Flatten层的输入大小:

top_model.add(Flatten(input_shape=model.output_shape[1:]))

这个问题一直困扰了我很久,keras系列︱图像多分类训练与利用bottleneck features进行微调(三)这位同学也是卡在这了,没能解决。不过我半个多月后又碰到了这个问题,发现没法绕开,最终还是找到了解决方法。实际上不止我一个人遇到了这个问题,很多人都遇到了,只是解决方法很难在搜索引擎上检索到:

[Keras] Keras面向小数据集的图像分类(retrain&fine-tine)_第1张图片
[Keras] Keras面向小数据集的图像分类(retrain&fine-tine)_第2张图片

解决方法其实已经在图中体现出来了,VGG模型在调用时选择了“不含顶层网络”的情况下,需要指定输入。VGG16的输入图像尺寸为(224,224),因此,将源代码中的:

model = applications.VGG16(weights='imagenet', include_top=False)

修改为如下即可:

model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(224,224,3))

需要注意的是,此时使用TensorFlow作为后端,因此图像数据格式为“channel_last”,如果使用theano则为(3,224,224),如果使用Inception_v3网络,则需要修改为:input_shape=(299,299,3)
修改完后再次运行程序,可能会有新错误:

model.add(top_model)
AttributeError: 'Model' object has no attribute 'add'

错误的原因是因为'Model'不含有'add'属性,没关系,我们可以使用函数式模型来解决无法'add'的问题,可以参考下图:

[Keras] Keras面向小数据集的图像分类(retrain&fine-tine)_第3张图片

将源码中的:

top_model = Sequential()
top_model.add(Flatten(input_shape=model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(1, activation='sigmoid'))

# note that it is necessary to start with a fully-trained
# classifier, including the top classifier,
# in order to successfully do fine-tuning
top_model.load_weights(top_model_weights_path)

# add the model on top of the convolutional base
model.add(top_model)

修改为:

# 新建一个分类模型置于模型顶层,并初始化
x = model.output
x = Flatten()(x)
x = Dense(256, 
          kernel_initializer='RandomUniform',
          activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(Nb_classes, 
                    kernel_initializer='RandomUniform',
                    activation='softmax')(x)

# 给经典模型组合新的顶层网络
new_model = Model(model.input, x)

因为我没有之前Building powerful image classification models using very little data中训练得到的Top layer的参数,因此我跳过了top_model.load_weights(top_model_weights_path)直接选择了'RandomUniform'初始化。除此之外,都大同小异,无需修改。

你可能感兴趣的:([Keras] Keras面向小数据集的图像分类(retrain&fine-tine))