- 机器学习算法:核心原理与前沿发展综述
fmvrj34202
机器学习算法人工智能
机器学习算法作为人工智能的核心驱动力,正在重塑我们解决问题的范式。本文将系统性地探讨机器学习算法的分类体系、数学基础、优化方法以及最新发展趋势,为从业者提供技术参考。一、算法分类体系根据学习范式,机器学习算法可分为三大类:监督学习:基于标注数据的建模方法线性回归:最小化平方误差的闭式解θ=(XᵀX)⁻¹Xᵀy支持向量机:通过核技巧实现非线性分类,优化目标为max(0,1-yᵢ(w·xᵢ+b))决策
- C#实现SVM支持向量机(附完整源码)
源代码大师
C#实战教程c#支持向量机开发语言
C#实现SVM支持向量机下面是使用C#实现支持向量机(SVM)的示例代码:usingSystem;usingAccord.MachineLearning.VectorMachines;usingAccord.MachineLearning.VectorMachines.Learning;usingAccord
- 支持向量机(SVM)在病理切片图像分类(癌细胞检测,Camelyon16/17、TCGA)中的应用与实现
猿享天开
支持向量机分类算法机器学习人工智能
支持向量机(SVM)在病理切片图像分类(癌细胞检测,Camelyon16/17、TCGA)中的应用与实现病理切片图像分类是医学影像分析的重要领域,特别是在癌细胞检测中,SVM因其对高维数据和小样本场景的优异性能,成为一种经典且有效的分类方法。本文将深入探讨SVM在Camelyon16/17和TCGA数据集上的应用,全面覆盖概念与原理、应用场景、及挑战与应对策略,欢迎感兴趣的阅读。[文中示例代码仅供
- 机器学习知识点复习 上(保研、复试、面试)百面机器学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- 【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
运器123
AI大模型支持向量机机器学习人工智能ai大数据AI编程算法
一、算法核心思想支持向量机(SVM)是一种强大的监督学习算法,核心思想是通过寻找最优超平面实现分类或回归:分类目标:找到能最大化两类数据间隔的超平面回归目标:找到包含最多数据点的ε带关键概念图解超平面:w·x+b=0/\/\+1|支持向量|-1|●●||●●||●●||_________________|最大间隔(margin)二、数学原理与优化问题1.线性可分情况目标函数:\min_{w,b}\
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- 《支持向量机(SVM)在医疗领域的变革性应用》
CodeJourney.
支持向量机算法机器学习
在医疗科技日新月异的今天,先进的数据分析与机器学习技术正逐渐成为提升诊疗水平、助力医学研究的关键力量。支持向量机(SVM),凭借其独特的优势,在医疗这片复杂且对精准度要求极高的领域崭露头角,带来诸多令人瞩目的应用成果。一、疾病诊断:癌症早期筛查的“火眼金睛”癌症,作为全球健康的“头号杀手”,早期诊断对提升患者生存率意义非凡。在乳腺癌筛查领域,SVM发挥着重要作用。医疗科研人员收集大量乳腺组织的影像
- 支持向量机(SVM)在肝脏CT/MRI图像分类(肝癌检测)中的应用及实现
猿享天开
医学影像支持向量机机器学习人工智能算法
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- 【数据挖掘】支持向量机(SVM)
大雨淅淅
大数据数据挖掘支持向量机算法大数据回归
目录一、支持向量机(SVM)算法概述二、支持向量机(SVM)算法优缺点和改进2.1支持向量机(SVM)算法优点2.2支持向量机(SVM)算法缺点2.3支持向量机(SVM)算法改进三、支持向量机(SVM)算法实现3.1支持向量机(SVM)算法C语言实现3.2支持向量机(SVM)算法JAVA实现3.3支持向量机(SVM)算法python实现四、支持向量机(SVM)算法应用五、支持向量机(SVM)算法发
- 【字节跳动】数据挖掘面试题0006:SVM(支持向量机)详细原理
言析数智
数据挖掘常见面试题支持向量机数据挖掘算法SVM
文章大纲SVM(支持向量机)原理:用最通俗的话讲清楚1.核心思想:找一条“最安全”的分界线2.数学背后的“人话”逻辑3.处理“分不开”的情况:核函数的魔法4.为什么SVM有时比神经网络“聪明”?`5.SVM的优缺点:适合什么场景?`6.一句话总结SVM7.SVM常见的面试知识点除了原理相关内容外**1.硬间隔SVM的数学表达****2.软间隔SVM的数学表达****3.拉格朗日对偶问题推导****
- 机器学习算法_支持向量机
一、支持向量机支持向量机只能做二分类任务SVM全称支持向量机,即寻找到一个超平面使样本分成两类,且间隔最大硬间隔:如果样本线性可分,在所有样本分类都正确的情况下,寻找最大间隔;如果出现异常值或样本线性不可分,此时硬间隔无法实现软间隔:允许部分样本,在最大间隔之内,甚至在错误的一边,寻找最大间隔;目标是尽可能保持间隔宽阔和限制间隔违例之间寻找良好的平衡惩罚系数:通过惩罚系数来控制这个平衡,C值越小,
- python学智能算法(十六)|机器学习支持向量机简单示例
西猫雷婶
python学习笔记人工智能机器学习机器学习python支持向量机人工智能深度学习
【1】引言前序学习了逻辑回归等算法,相关文章链接包括且不限于:python学智能算法(十)|机器学习逻辑回归(Logistic回归)_逻辑回归算法python-CSDN博客python学智能算法(十一)|机器学习逻辑回归深入(Logistic回归)_np.random.logistic()-CSDN博客今天在此基础上更进一步,学习支持向量机,为实现较好地理解,先解读一个简单算例。【2】代码解读【2
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- [KO机器学习] Day2 特征工程:数据预处理:序号编码、独热编码、二进制编码
码农男孩
机器学习机器学习人工智能计算机视觉算法支持向量机
场景描述类别型特征(categoricalfeature)主要是指性别(男女)、血型(A,B,AB,O)等只在有限选项内取值的特征。类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作。在对数据进行预处理时,应该怎么样处理类别型特征?难度:★☆☆☆☆①序号编码OrdinalEnco
- 基于传统机器学习SVM支持向量机进行分类和目标检测-视频介绍下自取
no_work
深度学习机器学习支持向量机分类
内容包括:python通过SVM+SIFT实现墙体裂缝检测107python通过SVM+SIFT实现墙体裂缝检测_哔哩哔哩_bilibili该代码使用python语言编写,代码实现了一个基于SVM(支持向量机)和SIFT(尺度不变特征变换)特征的裂缝检测系统。具体来说,分为两个部分:训练部分和检测部分。训练部分:加载图像:load_images函数从指定文件夹加载图像,并为每张图像分配标签(1表示
- SVM支持向量机python实现
努力的小巴掌
经典机器学习支持向量机
支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,主要用于分类和回归任务。SVM的核心思想是找到一个最优的超平面,使得不同类别的数据点能够被尽可能清晰地分开,并且这个超平面与最近的数据点之间有最大的间隔。这些最近的数据点被称为“支持向量”,因为它们决定了超平面的位置和方向。支持向量机的关键概念1.**最大间隔分离器**:-SVM的目标是找到一个超平面,该超平面
- Python机器学习小项目实战:随机森林算法实现信用卡欺诈检测
码上研习
Python机器学习小项目实战机器学习算法python
1.引言在之前的机器学习之旅中,我们已经探索了许多强大的算法,例如逻辑回归、支持向量机、决策树等等。每种算法都有其独特的优势和适用场景,但它们也存在一些共同的局限性。单个模型往往难以完美地捕捉复杂的数据模式,容易受到过拟合或欠拟合的影响,并且在面对噪声数据时显得脆弱。想象一下,你正在尝试预测股票价格的涨跌。你可以使用逻辑回归,但是逻辑回归假设特征之间是线性相关的,这可能无法捕捉股票市场中的复杂非线
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 划界与分类的艺术:支持向量机(SVM)的深度解析
忘梓.
杂文支持向量机分类机器学习
划界与分类的艺术:支持向量机(SVM)的深度解析1.引言支持向量机(SupportVectorMachine,SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分隔数据,从而实现高效的分类。然而,它在高维数据中的复杂性和核方法的使用也带来了挑战。本文将深入探讨SVM的工作原理、实现技巧、适用场景及其局限性。2.SVM的数学基础与直观理解SV
- 基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真
代码探险狂人
分类matlab机器学习Matlab
基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真图像分类是计算机视觉领域中的重要任务之一,它的目标是将输入的图像分到不同的预定义类别中。在本文中,我们将介绍一种基于CIFAR-10图像数据集和支持向量机(SVM)的图像分类算法,并使用MATLAB进行仿真实现。CIFAR-10是一个常用的图像分类数据集,它包含了10个不同类别的60000个32x32彩色图像。这些类别包括飞机、汽车、
- 核函数:解锁支持向量机的强大能力
从零开始学习人工智能
大数据人工智能机器学习
在机器学习的世界中,支持向量机(SVM)是一种强大的分类算法,而核函数则是其背后的“魔法”,让SVM能够处理复杂的非线性问题。今天,我们就来深入探讨核函数的奥秘,看看它们是如何帮助SVM在高维空间中找到最佳决策边界的。一、核函数是什么?核函数本质上是一种计算两个向量在高维空间中内积的方法,但它避免了直接将数据映射到高维空间的复杂计算。通过核函数,我们可以巧妙地将原始数据从低维空间映射到高维空间,从
- 支持向量机(SVM):解锁数据分类与回归的强大工具
从零开始学习人工智能
人工智能开源性能优化
在机器学习的世界中,支持向量机(SupportVectorMachine,简称SVM)一直以其强大的分类和回归能力而备受关注。本文将深入探讨SVM的核心功能,以及它如何在各种实际问题中发挥作用。一、SVM是什么?支持向量机是一种监督学习算法,主要用于分类和回归任务。它的核心思想是通过在特征空间中找到一个最优的分界面(超平面),将不同类别的数据点分隔开,或者拟合出一个回归函数来预测目标值。SVM的强
- 什么时候开始学习深度学习?
机器学习算法
人工智能机器学习深度学习学习深度学习人工智能机器学习计算机视觉知识图谱神经网络
咱们先来聊聊机器学习和深度学习的关系~这个问题其实挺常见的,之前我也跟不少同事、同学聊过。最近有好几个同学也聊过。简单说,深度学习是机器学习的一个子集,两者不是并列关系,而是“包含”关系。你可以这么理解:机器学习是一个大圈子,里面包括了各种方法,比如线性回归、决策树、支持向量机等等。而深度学习,它是基于神经网络的一类方法,尤其适合处理图像、语音、自然语言这些复杂的、非结构化的数据。深度学习为什么这
- 支持向量机(SVM)例题
phoenix@Capricornus
PR书稿支持向量机算法机器学习
对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量A(0,2)A(0,2)A(0,2)、B(2,0)B(2,0)B(2,0)和C(−1,−1)C(-1,-1)C(−1,−1)。求支持向量机的线性判别函数。删除点A后,支持向量是否变化?求解:三个点,建立联立方程组:{w1xA+w2yA+b=1w1xB+w2yB+b=1w1xC+w2yC+b=−1\begin{case
- 支持向量机SVM:从数学原理到实际应用
代码很孬写
支持向量机算法机器学习语言模型自然语言处理ai人工智能
前言本篇文章全面深入地探讨了支持向量机(SVM)的各个方面,从基本概念、数学背景到Python和PyTorch的代码实现。文章还涵盖了SVM在文本分类、图像识别、生物信息学、金融预测等多个实际应用场景中的用法。一、引言背景支持向量机(SVM,SupportVectorMachines)是一种广泛应用于分类、回归、甚至是异常检测的监督学习算法。自从Vapnik和Chervonenkis在1995年首
- 基于C++实现的深度学习(cnn/svm)分类器Demo
长长同学
深度学习c++cnn
1.项目简介本项目是一个基于C++实现的深度学习与传统机器学习结合的分类器Demo,主要流程为:从CSV文件读取样本数据用卷积神经网络(CNN)进行特征提取用支持向量机(SVM)进行最终分类支持模型的保存与加载提供DLL接口,方便与其他软件集成网盘地址:https://pan.baidu.com/s/1VoFdPAzueITcl_Up6hR_Wg2.主要结构与全局变量Sample结构体:存储单个样
- python打卡DAY25
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- python打卡DAY20
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshapfromsklearn.svmimportSVC#支持向量机分类器#fromsklearn.neighborsimportKNeighborsClassifier#K近
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,