『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类

Github地址:Mask_RCNN
『计算机视觉』Mask-RCNN_论文学习
『计算机视觉』Mask-RCNN_项目文档翻译
『计算机视觉』Mask-RCNN_推断网络其一:总览
『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络
『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成
『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合
『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼
『计算机视觉』Mask-RCNN_推断网络其六:Mask生成
『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断
『计算机视觉』Mask-RCNN_锚框生成
『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类
『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&损失函数
『计算机视觉』Mask-RCNN_训练网络其三:训练Model

本节介绍的数据集class构建为官方demo,对从零开始构建自己的数据集训练感兴趣的建议了解了本文及本文对应的代码文件后,看一下『计算机视觉』Mask-RCNN_关键点检测分支介绍了由自己的数据构建Mask RCNN可用形式的实践。

代码位置

在脚本train_shapes.ipynb中,作者演示了使用合成图片进行训练Mask_RCNN的小demo,我们将以此为例,从训练数据的角度重新审视Mask_RCNN。

在训练过程中,我们最先要做的根据我们自己的数据集,集成改写基础的数据读取class:util.py中的Dataset class,然后根据数据集调整网络配置文件配置config.py中的Config 类,使得网络形状配适数,然后再去考虑训练的问题。按照逻辑流程,本节我们以train_shapes.ipynb中的数据生成为例,学习Dataset class的运作机理。

在示例程序中,首先创建新的Dataset的子类(这里贴出整个class代码,后面会分节讲解):

class ShapesDataset(utils.Dataset):
    """Generates the shapes synthetic dataset. The dataset consists of simple
    shapes (triangles, squares, circles) placed randomly on a blank surface.
    The images are generated on the fly. No file access required.
    """

    def load_shapes(self, count, height, width):
        """Generate the requested number of synthetic images.
        count: number of images to generate.
        height, width: the size of the generated images.
        """
        # Add classes
        self.add_class("shapes", 1, "square")
        self.add_class("shapes", 2, "circle")
        self.add_class("shapes", 3, "triangle")

        # Add images
        # Generate random specifications of images (i.e. color and
        # list of shapes sizes and locations). This is more compact than
        # actual images. Images are generated on the fly in load_image().
        for i in range(count):
            bg_color, shapes = self.random_image(height, width)
            self.add_image("shapes", image_id=i, path=None,
                           width=width, height=height,
                           bg_color=bg_color, shapes=shapes)

    def load_image(self, image_id):
        """Generate an image from the specs of the given image ID.
        Typically this function loads the image from a file, but
        in this case it generates the image on the fly from the
        specs in image_info.
        """
        info = self.image_info[image_id]
        bg_color = np.array(info['bg_color']).reshape([1, 1, 3])
        image = np.ones([info['height'], info['width'], 3], dtype=np.uint8)
        image = image * bg_color.astype(np.uint8)
        for shape, color, dims in info['shapes']:
            image = self.draw_shape(image, shape, dims, color)
        return image

    def image_reference(self, image_id):
        """Return the shapes data of the image."""
        info = self.image_info[image_id]
        if info["source"] == "shapes":
            return info["shapes"]
        else:
            super(self.__class__).image_reference(self, image_id)

    def load_mask(self, image_id):
        """Generate instance masks for shapes of the given image ID.
        """
        info = self.image_info[image_id]
        shapes = info['shapes']
        count = len(shapes)
        mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)
        for i, (shape, _, dims) in enumerate(info['shapes']):
            mask[:, :, i:i+1] = self.draw_shape(mask[:, :, i:i+1].copy(),
                                                shape, dims, 1)
        # Handle occlusions
        occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8)
        for i in range(count-2, -1, -1):
            mask[:, :, i] = mask[:, :, i] * occlusion
            occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i]))
        # Map class names to class IDs.
        class_ids = np.array([self.class_names.index(s[0]) for s in shapes])
        return mask.astype(np.bool), class_ids.astype(np.int32)

    def draw_shape(self, image, shape, dims, color):
        """Draws a shape from the given specs."""
        # Get the center x, y and the size s
        x, y, s = dims
        if shape == 'square':
            cv2.rectangle(image, (x-s, y-s), (x+s, y+s), color, -1)
        elif shape == "circle":
            cv2.circle(image, (x, y), s, color, -1)
        elif shape == "triangle":
            points = np.array([[(x, y-s),
                                (x-s/math.sin(math.radians(60)), y+s),
                                (x+s/math.sin(math.radians(60)), y+s),
                                ]], dtype=np.int32)
            cv2.fillPoly(image, points, color)
        return image

    def random_shape(self, height, width):
        """Generates specifications of a random shape that lies within
        the given height and width boundaries.
        Returns a tuple of three valus:
        * The shape name (square, circle, ...)
        * Shape color: a tuple of 3 values, RGB.
        * Shape dimensions: A tuple of values that define the shape size
                            and location. Differs per shape type.
        """
        # Shape
        shape = random.choice(["square", "circle", "triangle"])
        # Color
        color = tuple([random.randint(0, 255) for _ in range(3)])
        # Center x, y
        buffer = 20
        y = random.randint(buffer, height - buffer - 1)
        x = random.randint(buffer, width - buffer - 1)
        # Size
        s = random.randint(buffer, height//4)
        return shape, color, (x, y, s)

    def random_image(self, height, width):
        """Creates random specifications of an image with multiple shapes.
        Returns the background color of the image and a list of shape
        specifications that can be used to draw the image.
        """
        # Pick random background color
        bg_color = np.array([random.randint(0, 255) for _ in range(3)])
        # Generate a few random shapes and record their
        # bounding boxes
        shapes = []
        boxes = []
        N = random.randint(1, 4)
        for _ in range(N):
            shape, color, dims = self.random_shape(height, width)
            shapes.append((shape, color, dims))
            x, y, s = dims
            boxes.append([y-s, x-s, y+s, x+s])
        # Apply non-max suppression wit 0.3 threshold to avoid
        # shapes covering each other
        keep_ixs = utils.non_max_suppression(np.array(boxes), np.arange(N), 0.3)
        shapes = [s for i, s in enumerate(shapes) if i in keep_ixs]
        return bg_color, shapes

一、原始数据信息录入

然后调用如下方法(IMAGE_SHAPE=[128 128 3],介绍config时会提到),准备训练用数据和验证集数据,注意,此时仅仅是在做准备并未真实的生成或读入图片数据,

# Training dataset
dataset_train = ShapesDataset()
dataset_train.load_shapes(500, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
dataset_train.prepare()

# Validation dataset
dataset_val = ShapesDataset()
dataset_val.load_shapes(50, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
dataset_val.prepare()

其调用的load_shapes方法如下:

    def load_shapes(self, count, height, width):
        """Generate the requested number of synthetic images.
        count: number of images to generate.
        height, width: the size of the generated images.
        """
        # Add classes
        self.add_class("shapes", 1, "square")
        self.add_class("shapes", 2, "circle")
        self.add_class("shapes", 3, "triangle")

        # Add images
        # Generate random specifications of images (i.e. color and
        # list of shapes sizes and locations). This is more compact than
        # actual images. Images are generated on the fly in load_image().
        for i in range(count):
            bg_color, shapes = self.random_image(height, width)
            self.add_image("shapes", image_id=i, path=None,
                           width=width, height=height,
                           bg_color=bg_color, shapes=shapes)

这里涉及了两个父类继承来的方法self.add_class和self.add_image,我们去util.py中的Dataset class看一看,

class Dataset(object):
    """The base class for dataset classes.
    To use it, create a new class that adds functions specific to the dataset
    you want to use. For example:

    class CatsAndDogsDataset(Dataset):
        def load_cats_and_dogs(self):
            ...
        def load_mask(self, image_id):
            ...
        def image_reference(self, image_id):
            ...

    See COCODataset and ShapesDataset as examples.
    """

    def __init__(self, class_map=None):
        self._image_ids = []
        self.image_info = []
        # Background is always the first class
        self.class_info = [{"source": "", "id": 0, "name": "BG"}]
        self.source_class_ids = {}

    def add_class(self, source, class_id, class_name):
        assert "." not in source, "Source name cannot contain a dot"
        # Does the class exist already?
        for info in self.class_info:
            if info['source'] == source and info["id"] == class_id:
                # source.class_id combination already available, skip
                return
        # Add the class
        self.class_info.append({
            "source": source,
            "id": class_id,
            "name": class_name,
        })

    def add_image(self, source, image_id, path, **kwargs):
        image_info = {
            "id": image_id,
            "source": source,
            "path": path,
        }
        image_info.update(kwargs)
        self.image_info.append(image_info)

也就是说,在Dataset中有self.image_info 和 self.class_info 两个list,它们的元素都是固定key的字典,

"source"对应数据集名称,

"id"对应本数据集内当前图片/类别标号

"path"仅image_info含有,对应图像路径,可为None

"name"仅class_info含有,对应类别描述

在后面的prepare方法中我们可以进一步了解,使用source.id作key,可以索引到一个内建的新的internal id,这也像我们解释了为什么文档中说Mask_RCNN支持多个数据集同时训练的由来。

回到load_shapes方法,self.random_image方法为新建方法,这里作者使用算法生成图像做训练,该方法返回生成图像函数所需的随机参数,之后调用add_image时传入path为None,也是因为数据并非从磁盘读取,而是自己生成,并传入了额外的self.random_image方法返回的生成参数(我们不必关系具体参数是什么),作为字典参数解读,添加进self.image_info中,

        for i in range(count):
            bg_color, shapes = self.random_image(height, width)
            self.add_image("shapes", image_id=i, path=None,
                           width=width, height=height,
                           bg_color=bg_color, shapes=shapes)

从这里,我们进一步了解了self.image_info的含义,记录每一张图片的id信息("source"和"id"),记录每一张图片的数据信息(如何获取图像矩阵的线索,包含"path"或者其他的字典索引,只要保证后面能实现函数,根据这个信息获取图片数据即可)。

二、数据信息整理

在初始化了 self.image_info 和 self.class_info 两个list之后,Dataset已经记录了原始的类别信息和图像信息,调用prepare方法进行规范化,

    def prepare(self, class_map=None):
        """Prepares the Dataset class for use.

        TODO: class map is not supported yet. When done, it should handle mapping
              classes from different datasets to the same class ID.
        """

        def clean_name(name):
            """Returns a shorter version of object names for cleaner display."""
            return ",".join(name.split(",")[:1])

        # Build (or rebuild) everything else from the info dicts.
        self.num_classes = len(self.class_info)                              # 类别数目
        self.class_ids = np.arange(self.num_classes)                         # internal 类别IDs
        self.class_names = [clean_name(c["name"]) for c in self.class_info]  # 类别名简洁版
        self.num_images = len(self.image_info)                               # 图片数目
        self._image_ids = np.arange(self.num_images)                         # internal 类别IDs

        # Mapping from source class and image IDs to internal IDs
        self.class_from_source_map = {"{}.{}".format(info['source'], info['id']): id
                                      for info, id in zip(self.class_info, self.class_ids)}
        self.image_from_source_map = {"{}.{}".format(info['source'], info['id']): id
                                      for info, id in zip(self.image_info, self.image_ids)}

        # Map sources to class_ids they support
        self.sources = list(set([i['source'] for i in self.class_info]))
        self.source_class_ids = {}  # source对应的internal 类别IDs
        # Loop over datasets
        for source in self.sources:
            self.source_class_ids[source] = []
            # Find classes that belong to this dataset
            for i, info in enumerate(self.class_info):
                # Include BG class in all datasets
                if i == 0 or source == info['source']:
                    self.source_class_ids[source].append(i)

类别信息记录

将"source.id"映射为唯一的internal IDs,并将全部的internal IDs存储在self.class_ids

source_class_ids,记录下每一个"source"对应的internal IDs

class_from_source_map,记录下"source.id":internal IDs的映射关系

print(dataset_train.class_info)  # 每个类别原始信息
print(dataset_train.class_ids)   # 记录类别internal IDs
print(dataset_train.source_class_ids)  # 每个数据集对应的internal IDs
print(dataset_train.class_from_source_map)  # 原始信息和internal ID映射关系

输出如下:

[{'source': '', 'id': 0, 'name': 'BG'}, 
{'source': 'shapes', 'id': 1, 'name': 'square'},
{'source': 'shapes', 'id': 2, 'name': 'circle'},
{'source': 'shapes', 'id': 3, 'name': 'triangle'}] [0 1 2 3] {'': [0], 'shapes': [0, 1, 2, 3]} {'.0': 0, 'shapes.1': 1, 'shapes.2': 2, 'shapes.3': 3}

有固定的source为空的类别0(id和internal ID都是),标记为背景,会添加进source_class_ids中全部的数据集对应的类别中(上面"shape"数据集我们仅定义了3个类,在映射中多了一个0变成4个类)。

图片信息记录

图片信息不像类别一样麻烦,我们简单输出三张,

# Training dataset
dataset_train = ShapesDataset()
dataset_train.load_shapes(3, config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1])
dataset_train.prepare()

print(dataset_train.image_info)  # 记录图像原始信息
print(dataset_train.image_ids)   # 记录图像internal IDs
print(dataset_train.image_from_source_map)  # 原始信息和internal ID对应关系

结果如下,

[{'id': 0, 'source': 'shapes', 'path': None, 'width': 128, 'height': 128, 'bg_color': array([163, 143, 173]), 
'shapes': [('circle', (178, 140, 65), (83, 104, 20)), ('circle', (192, 52, 82), (48, 58, 20))]},
{'id': 1, 'source': 'shapes', 'path': None, 'width': 128, 'height': 128, 'bg_color': array([ 5, 99, 71]),
'shapes': [('triangle', (90, 32, 55), (39, 21, 22)), ('circle', (214, 49, 173), (39, 78, 21))]},
{'id': 2, 'source': 'shapes', 'path': None, 'width': 128, 'height': 128, 'bg_color': array([138, 52, 83]),
'shapes': [('circle', (180, 74, 150), (105, 45, 27))]}] [0 1 2] {'shapes.0': 0, 'shapes.1': 1, 'shapes.2': 2}

【注1】由于这是图像检测任务而非图像分类任务,故每张图片仅仅和归属数据集存在映射,和类别信息没有直接映射。图像上的目标和类别才存在映射关系,不过那不在本部分函数涉及范围内。

【注2】internal IDs实际上就是info的索引数组,使用internal IDs的值可以直接索引对应图片顺序的info信息。

总结,在调用self.prepare之前,通过自己的新建方法调用self.add_class()和self.add_image(),将图片和分类的原始信息以dict的形式添加到class_info与image_info两个list中,即可。

三、获取图片

然后我们获取一些样例图片进行展示,

# Load and display random samples
image_ids = np.random.choice(dataset_train.image_ids, 4)
for image_id in image_ids:
    image = dataset_train.load_image(image_id)
    mask, class_ids = dataset_train.load_mask(image_id)
    visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)
    print(image.shape, mask.shape, class_ids, dataset_train.class_names)

由上面代码我们可以获悉如下信息:

使用self.image.ids即internal IDs进行图片选取

自行实现load_image方法,获取图片internal IDs,索引图片原始信息(info),利用原始信息输出图片

自行实现load_mask方法,获取图片internal IDs,索引图片原始信息(info),利用原始信息输出图片的masks和对应internal类别,注意一张图片可以有多个mask并分别对应自己的类别

上述代码输出如下(仅展示前两张),

『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类_第1张图片

下面贴出load_image和load_mask方法(详见train_shapes.ipynb),具体实现不是重点,毕竟我们也不是在研究怎么画2D图,重点在于上面提到的它们的功能,这涉及到我们迁移到自己的数据时如何实现接口。load_image方法返回一张图片,load_mask方法返回(h,w,c)的01掩码以及(c,)的class id,注意,c指的是盖章图片中instance的数目

    def load_image(self, image_id):
        """Generate an image from the specs of the given image ID.
        Typically this function loads the image from a file, but
        in this case it generates the image on the fly from the
        specs in image_info.
        """
        info = self.image_info[image_id]
        bg_color = np.array(info['bg_color']).reshape([1, 1, 3])
        image = np.ones([info['height'], info['width'], 3], dtype=np.uint8)
        image = image * bg_color.astype(np.uint8)
        for shape, color, dims in info['shapes']:
            image = self.draw_shape(image, shape, dims, color)
        return image


    def load_mask(self, image_id):
        """Generate instance masks for shapes of the given image ID.
        """
        info = self.image_info[image_id]
        shapes = info['shapes']
        count = len(shapes)
        mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)
        for i, (shape, _, dims) in enumerate(info['shapes']):
            mask[:, :, i:i+1] = self.draw_shape(mask[:, :, i:i+1].copy(),
                                                shape, dims, 1)
        # Handle occlusions
        occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8)
        for i in range(count-2, -1, -1):
            mask[:, :, i] = mask[:, :, i] * occlusion
            occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i]))
        # Map class names to class IDs.
        class_ids = np.array([self.class_names.index(s[0]) for s in shapes])
        return mask.astype(np.bool), class_ids.astype(np.int32)

小结

正如Dataset注释所说,要想运行自己的数据集,我们首先要实现一个方法(load_shapes,根据数据集取名即可)收集原始图像、类别信息,然后实现两个方法(load_image、load_mask)分别实现获取单张图片数据、获取单张图片对应的objs的masks和classes,这样基本完成了数据集类的构建。

The base class for dataset classes.
To use it, create a new class that adds functions specific to the dataset
you want to use. For example:

class CatsAndDogsDataset(Dataset):
def load_cats_and_dogs(self):
...
def load_mask(self, image_id):
...
def image_reference(self, image_id):
...

See COCODataset and ShapesDataset as examples.

 

你可能感兴趣的:(『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类)