1. 题目:求Majority Element
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
Example 1:
Input: [3,2,3]
Output: 3
Example 2:
Input: [2,2,1,1,1,2,2]
Output: 2
2. solution one: Brute Force
Time complexity : O(n^2), Space complexity : O(1)
public int majorityElementBruteForce(int[] nums) {
int majorityCount = nums.length/2;
for (int num : nums) {
int count = 0;
for (int elem : nums) {
if (elem == num) {
count += 1;
}
}
if (count > majorityCount) {
return num;
}
}
return -1;
}
3. solution two: HashMap
Time complexity : O(n), Space complexity : O(n)
public int majorityElementHashMap(int[] nums) {
Map counts = countNums(nums);
Map.Entry majorityEntry = null;
for (Map.Entry entry : counts.entrySet()) {
if (majorityEntry == null || entry.getValue() > majorityEntry.getValue()) {
majorityEntry = entry;
}
}
return majorityEntry.getKey();
}
private Map countNums(int[] nums) {
Map counts = new HashMap();
for (int num : nums) {
if (!counts.containsKey(num)) {
counts.put(num, 1);
}
else {
counts.put(num, counts.get(num)+1);
}
}
return counts;
}
4. solution three: sort
Time complexity : O(nlgn), Space complexity : O(1) or (O(n)
public int majorityElementSort(int[] nums) {
Arrays.sort(nums);
return nums[nums.length/2];
}
5. solution fore: Boyer-Moore Voting Algorithm
Time complexity : O(n), Space complexity : O(1)
public int majorityElementVoting(int[] nums) {
int count = 0;
Integer candidate = null;
for (int num : nums) {
if (0 == count) {
candidate = num;
}
count += (num == candidate) ? 1 : -1;
}
return candidate;
}
6. solution five: Divide and Conquer
Time complexity : O(nlgn), Space complexity : O(lgn)
public int majorityElementDivide(int[] nums) {
return majorityElementRec(nums, 0, nums.length-1);
}
private int countInRange(int[] nums, int num, int lo, int hi) {
int count = 0;
for (int i = lo; i <= hi; i++) {
if (nums[i] == num) {
count++;
}
}
return count;
}
private int majorityElementRec(int[] nums, int lo, int hi) {
// base case; the only element in an array of size 1 is the majority
// element.
if (lo == hi) {
return nums[lo];
}
// recurse on left and right halves of this slice.
int mid = (hi-lo)/2 + lo;
int left = majorityElementRec(nums, lo, mid);
int right = majorityElementRec(nums, mid+1, hi);
// if the two halves agree on the majority element, return it.
if (left == right) {
return left;
}
// otherwise, count each element and return the "winner".
int leftCount = countInRange(nums, left, lo, hi);
int rightCount = countInRange(nums, right, lo, hi);
return leftCount > rightCount ? left : right;
}
作者 @没有故事的老大爷
中国一点都不能少