- 岭回归预测PM2.5
qianjinwang
python
#-*-coding:utf-8-*-#@File:demo2.py#@Author:CJH#@Date:2019/4/9#@Software:PyCharm#@Desc:天气PM2.5预测importcsvimportnumpyasnpfromnumpyimport*importmatplotlib.pyplotaspltfromsklearnimportlinear_modeltraining
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
m0_74823683
面试学习路线阿里巴巴transformer架构深度学习
1.LLM基础架构类型DenseTransformerMoE(MixtureofExperts)TransformerHybrid-MoETransformer2.Transformer按照编码方式分类单向自回归模型(如早期GPT系列)双向模型(如BERT)编码器-解码器模型(如BART,T5)DenseTransformerDenseTransformer的优势是什么DenseTransform
- 分享C++程序员面试八股文(二)
柏柏柏衬
c++面试数据结构后端算法
以下是一些C++常见的八股文问题及回答:说一下static关键字的作用全局静态变量:在全局变量前加上static,它将存放在静态存储区,在整个程序运行期间一直存在。未经初始化的全局静态变量会被自动初始化为0,其作用域是从定义之处开始到文件结尾,在声明它的文件之外不可见。局部静态变量:位于局部变量之前的static使其成为局部静态变量,同样存放在静态存储区。未经初始化的局部静态变量也会被自动初始化为
- 机器算法之逻辑回归(Logistic Regression)详解
HappyAcmen
算法合集算法逻辑回归机器学习
一、什么是逻辑回归?逻辑回归并不是传统意义上的回归分析,而是一种用于处理二分类问题的线性模型。它通过计算样本属于某一类别的概率来进行分类,尽管名字中有“回归”二字,但它实际上是一种分类算法。简单来说,逻辑回归回答的是“这件事发生的可能性有多大”。二、逻辑回归的基本原理在讲原理之前,我们先来了解一下逻辑回归的数学基础。逻辑回归的核心是一个Logistic函数(或称为Sigmoid函数),它的公式如下
- 通达信5分钟.lc5和.lc1文件格式
weixin_30767835
python数据结构与算法c#
一、通达信日线*.day文件文件名即股票代码每32个字节为一天数据每4个字节为一个字段,每个字段内低字节在前00~03字节:年月日,整型04~07字节:开盘价*100,整型08~11字节:最高价*100,整型12~15字节:最低价*100,整型16~19字节:收盘价*100,整型20~23字节:成交额(元),float型24~27字节:成交量(股),整型28~31字节:上日收盘*100,整型二、通
- 中科曙光C/C++研发工程师二面
TrustZone_
ARM/Linux嵌入式面试c语言c++开发语言
自我介绍;针对项目:CNN模型、损失函数、评价指标、改进方向、计算加速;CNN模型CNN,即卷积神经网络,是一种专门用于处理具有类似网格结构数据的深度学习模型。它通过卷积层和池化层提取图像特征,并通过全连接层进行分类或回归预测。CNN在图像识别、目标检测和图像生成等领域取得了巨大成功。具体来说,CNN的模型结构包括输入层、卷积层、激活函数、池化层、全连接层和输出层。输入层接收图像数据,并将其转换为
- (贪心)快速过河问题——算法笔记
JeffyGao
C++算法笔记
首先对数组进行排序,速度快的在前面(过河速度取决于慢者)。记速度最快的依次为a,b,c,d...左侧是渡河的起点,left表示左边剩余人数由数学知:当2*b不等于a+c时需要判断min(s1,s2)s1,s2表示把cd带走所需的秒数。12出发,1返回;34出发,2返回;12过去s1=speed[1]+speed[0]+speed[left-1]+speed[1];13出发,1返回;14出发,1返回
- 大华测试笔试题_大华软件测试笔试题目 大华软件测试笔试题
zh222333
大华测试笔试题
软件测试工程师笔试试题首先,我不急于回答你的问题你先自己检查一下自己所说的话语中有没有错误,软件测试最关键在于是细心,认真。其次,你的问题1.你们是怎样进行回归测试的,一般进行几轮,具体说一下?2.你们一个项目总工要写多少用例?3.你知道一个项目代码有多大?4.你们公司的测试流程?5.在测试之前,你们干什么?6.测试计划中,你们项目经理是依据什么给你们分配任务的?7.你们的测试数据主要来自哪?8.
- 430道C++面试八股文(答案、分析和深入提问)整理
ocean2103
面试题面试c++开发语言
1.面向对象编程中的多态性是什么?使用函数重载编写一个多态性示例。回答在C++中,面向对象编程中的多态性是指同一操作或方法在不同的上下文中可以表现出不同的行为。多态性通常分为两种主要类型:编译时多态性(或静态多态性)和运行时多态性(或动态多态性)。编译时多态性:通过函数重载和运算符重载实现。在编译阶段,根据参数的类型和数量决定调用哪个函数。运行时多态性:通过基类指针或引用指向派生类对象,并利用虚函
- 132道系统架构面试八股文(答案、分析和深入提问)整理
ocean2103
面试题系统架构面试职场和发展
1.谈一谈缓存穿透、缓存击穿和缓存雪崩,以及解决办法回答在系统架构中,缓存是一种重要的性能优化手段,但在实际使用中可能会遭遇一些问题,如缓存穿透、缓存击穿和缓存雪崩。下面分别解释这三种现象及其解决方法。1.缓存穿透定义:缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致每次请求都直接查询数据库,造成对数据库的压力。解决办法:参数校验:在请求到达缓存和数据库之前,进行参数校验,拒绝无效请求。使
- 庖丁解java(一篇文章学java)
庖丁解java
java开发语言
(大家不用收藏这篇文章,因为这篇文章会经常更新,也就是删除后重发)一篇文章学java,这是我滴一个执念...当然,真一篇文章就写完java基础,java架构,java业务实现,java业务扩展,根本不可能.所以,这篇文章,就是一个索引,索什么呢?请看下文...关于决定开始写博文的介绍(一切故事的起点源于这一次反省)中小技术公司的软扩展(微服务扩展是否有必要?)-CSDN博客SpringCloud(
- 【Python八股文系列】100个Python的面试/笔试高频考点
程序员鑫港
pythonpython面试开发语言python面试题python入门python笔试题python入门教程
Python的100个面试/笔试高频考点本文主要整理了关于Python的面试/笔试的一些考点,可用于查漏补缺。前排提示:文末有独家福利!文章目录Python的100个面试/笔试高频考点1\.解释型和编译型语言的区别2\.简述下Python中的字符串、列表、元组和字典3\.简述上述数据类型的常用方法4\.简述Python中的字符串编码5\.一行代码实现数值交换6\.is和==的区别7\.Python
- 探索泰坦尼克号生存分类数据集:机器学习与数据分析的完美起点
岑童嵘
探索泰坦尼克号生存分类数据集:机器学习与数据分析的完美起点【下载地址】泰坦尼克号生存分类数据集本仓库提供了一个经典的机器学习数据集——泰坦尼克号生存分类数据集。该数据集包含两个CSV文件:训练集和测试集。数据集主要用于训练和评估机器学习模型,以预测泰坦尼克号乘客的生存情况项目地址:https://gitcode.com/open-source-toolkit/35561项目介绍泰坦尼克号生存分类数
- MySQL面试题 2024 金九银十 最新 C# 高级 资深 DB 八股文
云草桑
.net面试sql数据库mysqlsqlnetc#
最新mysql八股文chatgpt都能回答的问题,就没必要螺丝是往那边扭了。目录一、数据库知识(通用)篇1.说说drop、truncate、delete区别2.说说主键、外键、超键、候选键3.varchar和char的使用场景?4.什么叫视图?游标是什么?5.说说like%和-的区别6.为什么用自增列作为主键?7.说说非关系型数据库和关系型数据库区别,优势比较?8.说说存储过程的优缺点?9.什么是
- 叮!OpenBayes 半价礼包已送达,算力资源低至 1.15 元/小时
新春将至,我们距离蛇年仅一步之遥,为了感谢大家这一年的支持,小贝也为大家准备了沉甸甸的年货----算力资源半价大礼包!!你没有看错!即日起-2025年2月10日12:00(UTC+8),OpenBayes平台单卡RTX4090、单卡A6000包日、包周限时半价,价格低至1.15元/小时。1活动详情单卡RTX4090包日原价58元,折后29元(约1.21元/小时)包周原价386元,折后193元(约1
- 【AI论文】迈向大型推理模型:大型语言模型增强推理综述
东临碣石82
人工智能语言模型自然语言处理
摘要:语言长久以来被视为人类推理不可或缺的工具。大型语言模型(LLM)的突破激发了利用这些模型解决复杂推理任务的浓厚研究兴趣。研究人员已经超越了简单的自回归词元生成,引入了“思维”的概念——即代表推理过程中间步骤的词元序列。这一创新范式使LLM能够模仿复杂的人类推理过程,如树搜索和反思性思维。近期,一种新兴的学习推理趋势采用强化学习(RL)来训练LLM掌握推理过程。这种方法通过试错搜索算法自动生成
- 【ORB-SLAM2:三、 地图初始化】
KeyPan
ORB-SLAM2数码相机计算机视觉人工智能机器学习深度学习算法
地图初始化是视觉SLAM系统的关键步骤之一,它是整个系统运行的起点。初始化的主要任务是从输入图像数据中构建一个初始地图,为后续的相机位姿估计和场景重建提供基础。无论是单目、双目还是RGB-D相机,地图初始化的结果直接决定了系统的鲁棒性和精度。3.1为什么需要地图初始化3.1.1地图初始化的重要性定义初始参考坐标系地图初始化为SLAM系统提供了一个全局参考坐标系,使后续的位姿估计和地图扩展能够在一致
- 线性回归:从基础到进阶的全面解析
tester Jeffky
大模型线性回归机器学习算法
线性回归:从基础到进阶的全面解析线性回归是机器学习中最基本的算法之一,广泛应用于预测和分析。本文将详细介绍线性回归的基本概念、数学原理、实现方法以及在实际应用中的注意事项。我们将通过丰富的代码示例来展示如何从头开始构建一个简单的线性回归模型,并逐步深入到更复杂的场景。1.线性回归的基本概念1.1什么是线性回归?线性回归是一种用于建模两个或多个变量之间关系的统计方法。它假设因变量(目标变量)与一个或
- 2025java面试常见八股文整理
Java八股文面试
面试职场和发展javaspringbootjvmspringspringcloud
1.多线程编程下,怎么解决线程的数据安全问题?如果线程存在竞争临界资源,多线程访问下添加同步代码块synchronized解决,或者分布式排他锁进行临界资源控制。在分布式多线程环境下,线程的数据安全尽量不要产生连接资源,使用线程本地化ThreadLocal实现线程资源隔离。2.SpringIOC依赖注入怎么理解,spring有几种方式属性注入,setter构建pojo实体类和有参构造方法工厂方法注
- 软件工程练习:模块化,单元测试,回归测试,TDD
SoftwareTeacher
pythonjava编程语言人工智能大数据
这是《构建之法》实战教学的一部分。适合作为同学们的第二个程序作业。第一个程序作业:请看“概论”一章的练习,或者老师的题目,例如这个。作业要求:软件工程的作业越来越有意思了,我们在第一个作业中,用各种语言实现了一个命令行的四则运算小程序。我们看看如果要把我们的小程序升级为能稳定运行,解决用户问题的软件,应该怎么做。建议在做下面的题目的时候,采用结对编程的方式,在练习中,让同学们学会模块化编程,信息隐
- 【机器学习:二十六、决策树】
KeyPan
机器学习机器学习决策树人工智能算法深度学习数据挖掘
1.决策树概述决策树是一种基于树状结构的监督学习算法,既可以用于分类任务,也可以用于回归任务。其主要通过递归地将数据划分为子集,从而生成一个具有条件结构的树模型。核心概念节点(Node):每个节点表示一个特定的决策条件。根节点(RootNode):树的起点,包含所有样本。分支(Branch):每个分支代表一个条件划分的结果。叶节点(LeafNode):终止节点,表示最终的决策结果。优点直观可解释:
- 深入剖析:Unix 系统管理的高级实践与技巧
Echo_Wish
让你快速入坑运维运维探秘unix服务器
深入剖析:Unix系统管理的高级实践与技巧作为一名系统管理员,掌握Unix系统的基础操作只是起点。高级实践要求你不仅能够高效处理复杂任务,还需优化系统性能、自动化日常操作,并确保系统的安全性与可靠性。本文将带你探讨Unix系统管理的一些高级实践,结合实际案例与代码,帮助你提升技能。一、系统性能优化:从监控到调优1.性能监控:识别瓶颈性能优化的第一步是监控系统,找出瓶颈所在。Unix提供了一些强大的
- 玩转大模型的第一步——提示词(Prompt)工程【抛砖篇】
AI大模型老林
prompt数据挖掘机器学习opencv语音识别人工智能
前言AI大模型提示词工程,又名LLMpromptsProject,指的是在使用大型语言模型(如OpenAI的GPT系列)时,用于引导模型生成特定响应的输入,是在使用AI大模型过程中非常重要的一个环节,是模型生成文本的起点。选择合适的Prompt对大模型回答的质量影响非常大,甚至可能会导致截然不同的结果。Prompt编写框架我们可以简单的看一下,分别使用下面两个Prompt在LLM的输出中分别会得到
- 冬天的第一场读书会,和技术大咖围炉夜读破万“卷” | 内含福利
腾讯云开发者
腾讯云
引言在这个快节奏、高压力的时代,我们仿佛被一股看不见的力量牵引着,不断地奔跑和追逐。我们似乎总是在寻找着某个目标,但在追寻的过程中,我们又不自觉地陷入了迷茫和彷徨之中。内卷,仿佛成了我们停滞不前的隐形枷锁,让人心生疲惫,却又难以挣脱,只想在躺平中寻找片刻的安宁。然而,在技术的浪潮中,有一群技术人,他们以自己的节奏稳步前行,不断探索和追寻新技术的边界。他们是如何做到在技术的洪流中保持从容,同时又保持
- 机器学习特征重要性之feature_importances_属性与permutation_importance方法
一叶_障目
机器学习python数据挖掘
一、feature_importances_属性在机器学习中,分类和回归算法的feature_importances_属性用于衡量每个特征对模型预测的重要性。这个属性通常在基于树的算法中使用,通过feature_importances_属性,您可以了解哪些特征对模型的预测最为重要,从而可以进行特征选择或特征工程,以提高模型的性能和解释性。1、决策树1.1.sklearn.tree.Decision
- 机器学习-期末测试
难以触及的高度
机器学习python人工智能
机器学习-期末测试线性回归1.代码展示#coding=UTF-8#拆分训练集和测试集importmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_split#是线性回归类是sklearn写好的根据梯度下降法fromsklearn.linear_modelimportLinearRegressionimportpand
- 游戏开发中不容忽视的粘包问题解析
阿贾克斯的黎明
游戏开发网络
在游戏开发的网络编程领域,粘包问题常常困扰着开发者,它可能导致数据解析错误,进而影响游戏的正常运行和玩家体验。今天,咱们就深入探讨一下粘包问题产生的缘由以及应对之策。一、粘包问题的成因(一)发送端因素缓存机制:TCP协议在传输层运作时,自带一套提升效率的缓存策略。当应用层频繁地、多次地调用发送函数,推送一个个零碎的小数据包时,TCP协议层可不是来一个发一个。它会先把这些小数据包一股脑儿收集到自己的
- 云手机:虚拟技术的革命性应用与实体手机的优劣对比
云云321
智能手机服务器矩阵线性代数安全
在近年来,随着互联网的火速发展,云手机作为一种新兴的技术产品,在游戏行业特别是手游市场中掀起了一股热潮。云手机,顾名思义,是架设在ARM虚拟服务器上的手机,其独特的虚拟技术为用户带来了前所未有的使用体验。那么,云手机与实体手机相比,究竟有哪些优劣呢?让我们来一探究竟。云手机的优势应用不占本地内存实体手机中,应用的安装和运行都会占用手机的内存空间。随着用户下载的应用越来越多,内存空间往往会变得捉襟见
- 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程
xiao5kou4chang6kai4
统计生态农业r语言回归贝叶斯统计学线性回归
专题一贝叶斯统计学的思想与概念1.1信念函数与概率1.2事件划分与贝叶斯法则1.3稀少事件的概率估计1.4可交换性1.5预测模型的构建专题二单参数模型2.1二项式模型与置信域2.2泊松模型与后验分布2.3指数族模型与共轭先验专题三蒙特卡罗逼近3.1蒙特卡罗方法3.2任意函数的后验推断3.3预测分布采样3.4后验模型检验专题四正态模型4.1均值与条件方差的推断4.2基于数学期望的先验4.3非正态分布
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理