Algorithm Graph I

References:
[1] Geeks for Geeks https://www.geeksforgeeks.org/graph-data-structure-and-algorithms/
BFS, DFS

Algorithm Graph I_第1张图片
image.png

127 word ladder

Algorithm Graph I_第2张图片
word ladder
public class WordLadder {
    public int ladderLength(String beginWord, String endWord, List wordList) {
            Set marked = new HashSet<>();
            Queue queue = new LinkedList();
            queue.offer(beginWord); 
            marked.add(beginWord);
            
            int layer = 1;
            int layerSize = 1;
            while (!queue.isEmpty()) {
                String cur = queue.poll(); 
                if (cur.equals(endWord)) 
                    return layer;
                layerSize--;
                
                //找cur的所有adjacent nodes
                for (String s : wordList) {
                    if (isAdjacent(cur, s)) {
                        if (!marked.contains(s)) {
                            marked.add(s);
                            queue.offer(s);
                        }
                    }
                }
                
                if (layerSize == 0) {
                    layerSize = queue.size();
                    layer++;
                }
            }
            
            // if not found;
        return 0;
    }
    
    private boolean isAdjacent(String a, String b) {
            if (a == null || b == null || a.length() != b.length()) return false;
            int diff = 0;
            for (int i = 0; i < a.length(); i++) {
                if (a.charAt(i) != b.charAt(i)) {
                    diff++;
                }
            }
            return diff == 1 ? true : false;
    }
}

解析:
等同于在一个无向图中做BFS,起点是beginWord,终点是endWord
比较简单的想法是先根据wordlist构建无向图,再进行常规的bfs搜索。
快一些的方法是不够造无向图,每一步直接搜索adjcent nodes
更快的方法是不相互比较是否是adjacent -- O(dict.size() ^ 2 * String.length)。而是直接根据给定的string来生成所有的adjacent string -- O(string.length * 26), 生成后判断是否在dictionary里面。O(dict.size() * String.length)

126 word ladder II

与127的区别是
(1) 要求所有的paths
(2) 要给出具体的path : start -> ... -> end

解法: Two Phases (1) BFS求出最短路径dst (2) dfs 全搜索最短路径dst个节点 (类似exhaustive search), 遇到dst个string == endWord时,就把那条path输出(很像permutation 里面backtracking的做法,需要还原重置)。

199 Binary Tree Right Side View

Algorithm Graph I_第3张图片
image.png
public List rightSideView(TreeNode root) {
        List res = new LinkedList<>();
        if (root == null) 
                return res;
        
        Queue queue = new LinkedList();
        queue.offer(root);
        int layerSize = 1;
        
        while (!queue.isEmpty()) {
                TreeNode cur = queue.poll();
                layerSize--;
                if (cur.left != null) {
                    queue.offer(cur.left);
                }
                    
                if (cur.right != null) {
                    queue.offer(cur.right);
                }

                if (layerSize == 0) {
                    layerSize = queue.size();
                    res.add(cur.val);
                }
        }
        return res;
    }

解析:bfs按照每个layer最后一个元素就是right side view

133 Clone Graph

Algorithm Graph I_第4张图片
image.png
public class CloneGraph {
    public UndirectedGraphNode cloneGraph(UndirectedGraphNode node) {
            if (node == null) 
                return null;
        
        // phase I 
            Map map = new HashMap<>();
            Set marked = new HashSet<>();
            Queue queue = new LinkedList<>();
            queue.offer(node);
            marked.add(node);
            while (!queue.isEmpty()) {
                UndirectedGraphNode curNode = queue.poll();
                map.put(curNode, new UndirectedGraphNode(curNode.label)); // copy node;
                
                for (UndirectedGraphNode n : curNode.neighbors) {
                    if (!marked.contains(n)) {
                        marked.add(n);
                        queue.offer(n);
                    }
                }
            }
            
            // phase II copy edges;
            marked.clear();
            queue.offer(node);
            marked.add(node);
            while (!queue.isEmpty()) {
                UndirectedGraphNode curNode = queue.poll();
                UndirectedGraphNode curNodeCopy = map.get(curNode);
                
                for (UndirectedGraphNode n : curNode.neighbors) {
                    curNodeCopy.neighbors.add(map.get(n));
                    if (!marked.contains(n)) {
                        marked.add(n);
                        queue.offer(n);
                    }
                }
            }
            
            return map.get(node);
    }

解析: 分成两个phase
(1) bfs/dfs复制节点。
(2) bfs/dfs复制edges

200 Number of Islands

Algorithm Graph I_第5张图片
image.png
    private char[][] grid;
    public int numIslands(char[][] grid) {
        this.grid = grid;
        if (grid == null || grid.length == 0) 
            return 0;
        
        int numOfIslands = 0;
        
        int N = grid.length;
        int M = grid[0].length;
        for (int i = 0; i < N; i++) {
                for (int j = 0; j < M; j++) {
                    if (grid[i][j] == '1') {
                        dfs(i, j);
                        numOfIslands++;
                    }
                }
        }
        return numOfIslands;
    }
    
    // dfs from node (i, j);
    private void dfs(int i, int j) {
        int N = grid.length;
        int M = grid[0].length;
        if (i < 0 || i >= N || j < 0 || j >= M || grid[i][j] == '0') {
            return;
        }
        
        grid[i][j] = '0';
        dfs(i+1, j);
        dfs(i-1, j);
        dfs(i, j+1);
        dfs(i, j-1);    
    }

解析:
这题可以理解为森林找树的数量
笨的方法可以maintain一个visited矩阵。这个矩阵可以用在dfs中,也可以用在遍历所有点时判断是否还需要dfs。
比较巧的方法是在visit完一个点后就把这个点删掉(设为0),同时visit该点的所有neighbors。
(1)这样dfs时无需判断点是否已经visit过
(2) visit neighbour时也可以直接visit上下左右而不需要判断marked

Number of Islands II

Algorithm Graph I_第6张图片
image.png
public class NumberOfIslandsII {
    private int[] dx = new int[] {1, -1, 0, 0};
    private int[] dy = new int[] {0, 0, 1, -1};
    private int[] id; // position -> id : (x,y) -> x*n+y 
    public List numIslands2(int m, int n, int[][] positions) {
            List res = new LinkedList();
            if (m == 0 || n == 0 || positions == null || positions.length == 0) 
                return res;
            
        id = new int[m*n];
        Arrays.fill(id, -1);
        int count = 0; // initially 0 islands
        for (int i = 0; i < positions.length; i++) {
                int curX = positions[i][0];
                int curY = positions[i][1];
                int curId = curX*n + curY;
                id[curId] = curId;
                count++; // assume it is an island
                for (int j = 0; j < dx.length; j++) {
                    int adjX = curX + dx[j];
                    int adjY = curY + dy[j];
                    int adjId = adjX*n + adjY; 
                    if (adjX < 0 || adjX >= n || adjY < 0 || adjY >= m || id[adjId] < 0) {
                        continue; // not valid adjacent nodes;
                    }
                    // otherwise check the father;
                    int curFather = findFather(curId);
                    int adjFather = findFather(adjId);
                    if (curFather != adjFather) {
                        id[curFather] = adjFather; // union
                        count--;
                    }
                }
                res.add(count);
        }
        return res;
    }
    
    // returns the boss of this point.
    private int findFather(int pointId) {
            if (id[pointId] == pointId) 
                return pointId;
            else {
                id[pointId] = findFather(id[pointId]);
                return id[pointId]; // here is path compression;
            }
    }
}

解析:无向图找connected component最快的方法就是union-find

这题果然是把二维的点转化成1维:[x,y] -> xN + y 作为ID,然后运用union-find。
一开始总共有M
N个tree(假设每个位置都是树)。Every time a new position is placed, find root of adjacent trees and union if possible;

  • path compression: findId(int i) {return id[i] = findId(id[i])}

你可能感兴趣的:(Algorithm Graph I)