- 2024-2025 贡献的开源项目总结
dotNET跨平台
开源
盘点2024-2025贡献的开源项目总结Intro借着统计贡献的时候盘点一下自己过去一年对别的开源项目合并的pullrequest,统计时间:从2024-04-01到2025-03-31,按PR合并的时间算PR总计:184,去掉自己仓库的PR对其他开源项目的PR总计:100,仓库数量:51,详细列表如下AllPRcontributions0xced/ChiselupdateMongoDbdrive
- STM32之无源蜂鸣器模块
目录一、系统概述二、无源蜂鸣器模块简介2.1基本概念2.2核心特性2.3驱动电路设计2.4STM32驱动关键2.5应用场景对比三、硬件设计3.1硬件组成3.2硬件连接四、软件设计4.1开发环境配置4.2关键代码实现4.2.1初始化代码4.2.2蜂鸣器控制函数4.2.3主程序示例五、系统调试与优化5.1频率精度调整5.2音量控制5.3音乐播放功能六、应用场景6.1与按键结合实现交互6.2报警模式6.
- 【大厂面试题】千万级大表如何快速删除大量数据
CBeann
【面试题】【架构&案例】【MySQL】java开源springjvmmysql大厂面试题
-作者简介:大厂高级Java开发工程师-称号:CSDN博客专家✨、阿里云博客专家-公众号:云服务小管家。免费的阿里云服务器☁和云环境直接使用-生活:专注于后端技术分享迷茫时可来瞅瞅码农轨迹♂️-服务:提供模拟面试和简历辅导,提供生产项目。内推可私信✉-卷卷群:可以和大家一起学习,一起进步-如果感觉博主的文章还不错的话,请三连支持一下博主哦背景最近在做一个项目,除了验证功能,还需要验证性能,所以前
- 【面试题】为什么kafka的吞吐量这么高
oraen
面试系列kafka分布式
我们总结一下为什么kafka的吞吐量高核心:顺序写+零拷贝+批处理一数据模型简单+顺序读写磁盘1kafka的数据存储本质上使用的是Append-only日志模型,数据写入和读取是顺序的,不需要复杂索引或随机写,大大简化了写路径,2消息以顺序追加方式写入磁盘,避免了随机写,而且顺序写入能够更高效地配合操作系统的页缓存,进一步提升写的性能。3消息的消费也是顺序读取的,顺序读取硬盘数据再配合内存映射大大
- 补充:解决Ubuntu20.04.4安装KRS时无法下载github代码问题
mamak426
kv260github自动驾驶人工智能
官方代码下载自github(gitlab),如何访问外网的问题这里可以合法合规解决,就是先把github的代码导入gitee,再采取同步的方式解决:原代码段如下:仔细看代码内容,链接路径全为github。catkrs_rolling.reposrepositories:ros2/ament_lint:type:giturl:https://github.com/ament/ament_lintve
- 开源语音分离工具大比拼:人声 VS 背景音乐 ⚔️ - 获取干净训练语音 (数据截至 2025年4月17日)!!!
小丁学Java
python人工智能
开源语音分离工具大比拼:人声VS背景音乐⚔️-获取干净训练语音(数据截至2025年4月17日)在音频处理,特别是机器学习训练数据的准备中,获取纯净的人声(去除背景音乐或噪声)是一个常见的痛点。幸运的是,开源社区提供了许多强大的工具来帮助我们完成这项任务!本文将盘点一系列GitHub上的开源语音分离项目,重点关注那些能有效分离“人物语音”和“背景音乐”的工具,并根据GitHub星标⭐(反映社区关注度
- Javascript基础内容回顾—变量提升、事件循环和闭包等内容
GISer_Jinger
javascript前端
以下是前端面试中JavaScript基础易错问题的详解,结合常见考点和易混淆概念进行解析:⚠️一、变量作用域与提升varvslet/const◦变量提升:var声明的变量会提升到作用域顶部(值为undefined),而let/const存在暂时性死区(声明前访问报错)。◦循环陷阱:for(vari=0;iconsole.log(i));//输出3,3,3(共享同一作用域)}for(leti=0;i
- 巨兽的阴影:大型语言模型的挑战与伦理深渊
田园Coder
人工智能科普人工智能科普
当GPT-4这样的庞然大物能够流畅对话、撰写诗歌、编写代码、解析图像,甚至在某些测试中媲美人类专家时,大型语言模型(LLM)仿佛成为了无所不能的“智能神谕”。然而,在这令人目眩的成就之下,潜藏着复杂而严峻的挑战与伦理困境,如同光芒万丈的科技巨兽脚下那片难以忽视的深邃阴影。这些挑战并非技术进步的偶然副作用,而是深植于LLM的运作本质、训练数据来源以及其与社会交互的复杂性之中。它们警示我们,在追逐能力
- AI+Web3:从自动化工具到自主经济体的范式革命
Loving_enjoy
计算机学科论文创新点迁移学习人工智能机器学习
>想象你的AI助手不仅能回答问题,还能自主管理你的加密资产、参与DAO治理、在预测市场博弈,甚至为你创造持续收益——欢迎来到AI与Web3融合的新世界。传统互联网(Web2)的AI困在中心化的牢笼中:数据被垄断在科技巨头手中,算法决策如同黑箱,用户沦为被动的数据奶牛。**Web3与AI的碰撞正在打破这一枷锁**,催生出去中心化的自主智能体(AIAgent),它们拥有数字身份、加密钱包和经济决策权,
- 为什么让AI洗碗比写诗难百倍?清华教授揭秘具身智能鸿沟
Loving_enjoy
计算机学科论文创新点机器学习人工智能facebook课程设计
>**人类小脑数亿年进化出的运动智慧,成了AI最难破解的密码**2025年3月,一位网友困惑地发问:“我想让人工智能替我洗碗做饭洗衣服,没想到现在的AI反而在画画、写歌、搞创作……”对此,全国政协委员、中国科学院自动化研究所研究员赵晓光一针见血地指出:**“大模型没有创新能力,想让AI干体力活还要靠具身智能的发展。”**这个看似矛盾的现象背后,隐藏着人工智能发展进程中一个惊人的认知盲区。清华大学心
- 【论文阅读】Dynamic Few-Shot Visual Learning without Forgetting
Bosenya12
论文阅读
系统概述如下:(a)一个基于卷积神经网络(ConvNet)的识别模型,该模型包含特征提取器和分类器;(b)一个少样本分类权重生成器。这两个组件都是在一组基础类别上训练的,我们为这些类别准备了大量训练数据。在测试阶段,权重生成器会接收少量新类别的训练数据以及基础类别的分类权重向量(分类器框内的绿色矩形),并为新类别生成相应的分类权重向量(分类器框内的蓝色矩形)。这样,卷积神经网络就能同时识别基础类别
- 【资源分享】外文文献检索网站
Bosenya12
资源文献检索
外文文献检索网站Sci-Hub网址链接:https://www.sci-hub.st/Sci-hub是一个可以无限搜索、查阅和下载大量优质论文的数据库。其优点在于可以免费下载论文文献。ScienceDirect网址链接:http://www.sciencedirect.com/ScienceDirect是一个拥有2500多本期刊以及近20000篇文章的科学数据库,里面的文献可以免费检索阅读。Pro
- 扩散模型中的 Transformer:图像生成及其延展应用询问 ChatGPT
DeepSeek大模型官方教程
transformerchatgpt深度学习自然语言处理人工智能ai大模型学习
扩散模型近年来在生成逼真但合成的连续媒体内容方面引起了广泛关注。本次演讲将介绍Transformer在图像生成的扩散模型中的应用,并进一步探讨其更广泛的前景。我们首先简要介绍扩散模型的基础知识以及它们的训练方式,从而建立基本背景。接着,我们讲解曾是扩散模型事实标准的基于UNet的网络架构,这将帮助我们理解引入Transformer架构并推动其发展的动因。随后,我们将深入探讨构成基础架构的核心模块,
- AI+小程序新范式:智能推荐、语音交互的场景落地全攻略
AI+小程序新范式:智能推荐、语音交互的场景落地全攻略内容摘要在AI技术席卷全球的今天,小程序与AI的结合已不再是“锦上添花”,而是企业生存的“必答题”。当用户打开一个电商小程序,系统竟能提前预判其需求;当用户对着智能音箱说一句指令,小程序即刻完成从订票到推荐餐厅的“一条龙”服务——这些场景正在成为现实。但问题随之而来:智能推荐如何避免“精准骚扰”?语音交互如何突破方言和噪音的桎梏?技术背后隐藏着
- STM实战开发(4):STM32控制蜂鸣器发声的开发博客
嵌入式开发项目
2025年嵌入式开发stm32嵌入式硬件单片机物联网
1.前言随着智能硬件的发展,蜂鸣器成为了很多嵌入式系统中的一个常见输出装置。无论是作为警报声,还是作为提示音,蜂鸣器都可以为用户提供直观的声音反馈。在嵌入式开发中,STM32由于其强大的性能和灵活的外设配置,成为了实现蜂鸣器控制的理想平台。本文将以STM32为开发平台,详细讲解如何控制蜂鸣器发声。通过本篇博客,你将能够了解蜂鸣器的工作原理、如何连接蜂鸣器到STM32单片机,以及如何编写控制蜂鸣器的
- PDF 的开发工具库: Adobe PDF Library
纸上笔下
AcroBatpdfadobeSDKAPI标准签名接口
AdobePDFLibrary是Adobe公司提供的一个软件开发工具包(SDK),它本质上是AdobeAcrobat的"无界面"版本,但功能更为强大。作为PDF处理领域的专业解决方案,它为开发者提供了创建、操作和管理PDF文档的全面能力。1many1many1manyAdobePDFLibrary+createPDF()+manipulatePDF()+extractData()+renderPD
- 国内Ubuntu访问不了github等外网
weixin_66009678
ubuntulinux运维
各位小伙伴们,大家好呀。大家是不是经常遇到访问不了外网的情况呀。在Ubuntu中可以这样做。访问这个网站网站测速-Ping检测-Trace查询-Dig查询-路由跟踪查询-tools.ipip.net,对于github.com,在这个网站输入github.com,会返回20.205.243.166然后在ubuntu上输入sudovi/etc/hosts然后增加如下:20.205.243.166git
- STM32之有源蜂鸣器模块
如愿小李单片机设计
单片机嵌入式硬件stm32
目录一、系统概述二、无源蜂鸣器模块简介2.1基本概念与工作原理2.2与无源蜂鸣器对比2.3关键电气参数2.4硬件驱动设计2.5选型与使用注意事项三、硬件设计3.1硬件组成3.2硬件连接四、软件设计4.1开发环境配置4.2关键代码实现4.2.1GPIO初始化4.2.2蜂鸣器控制函数4.2.3报警模式实现五、注意事项5.1驱动电路必须使用三极管5.2电压匹配5.3保护措施5.4电流消耗六、总结一、系统
- 0704-0706上海,又聚上了
GISer_Jinger
新浪微博前端
上次,还是0413,当时写了一篇,下次相见是何时?也鼓励自己下次相见是找到工作(实习也算),没想到真找到了,DWApp说到实习,其实没认真投递很多,互联网公司除了阿里系卡学历连笔试机会都没有的话,其他的都给了一定的面试机会,只是自己没能很好把握机会,也能理解毕竟刚开始面试又加上自己表达能力和总结的不到位,或多或少的和面试官有代沟,其实也好,万一是实习的Mentor两个人又聊不来互相不对头的话也不好
- 【论文阅读】Few-Shot PPG Signal Generation via Guided Diffusion Models
Bosenya12
论文阅读
从少量样本数据选择到后处理的整体框架。首先,扩散模型在N样本数据集和指导下的训练。接着,模型生成一个增强的数据集,并进一步优化以提高保真度。最后,这些合成数据与少量样本训练数据集结合,用于基准模型的训练和评估。数据分布从最初的红色变为保真度增强的蓝色,这表明模型与真实数据更加吻合,如简化后的数据分布示意图所示。这篇文章的核心内容是介绍了一种名为BG-Diff(Bi-GuidedDiffusion)
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- HarmonyOS开发秘籍:从监听系统变量到掌握AbilityStage回调
大雨淅淅
#HarmonyOS开发harmonyos华为
目录一、HarmonyOS开发新视野二、AbilityStage组件初相识(一)组件定义与作用(二)与Module的对应关系三、开发前的准备工作(一)创建AbilityStage文件步骤(二)导入依赖与配置文件四、监听系统环境变量变化实战(一)关键代码解析(二)回调函数触发机制五、AbilityStage其他回调函数探秘(一)onAcceptWant()(二)onMemoryLevel()(三)o
- Fibonacci sequence 斐波那契数列解法及分析
hiqex
ALfibfibonacci
版权声明:欢迎转载,但请注明出处,若有什么不对的地方,欢迎指正,https://blog.csdn.net/wutenglong123/article/details/82764585斐波那契数列(Fibonaccisequence)斐波那契数列的性质多种多样,截至现在,人么依然没有将之研究透彻,本文就从中选取几个有趣的性质分析。定义Fib数列的定义如下:F(n)={0ifn=01ifn=1Fn−
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
- 【scl】博图程序的导入和导出
peace..
西门子1200windows经验分享学习其他
导入或者导出博图文件的方法(也叫移植文件)目录前言编辑编辑前言本篇文章主要写一下关于博图文件的导入和导出,具体要怎么样才能将写好的程序或者块移植到其他地方,下面我们一起来看!一、程序块的导入和导出程序块包含FC块,FB块;注意:需要是SCL语言编写的程序块才可以导出源文件!导出步骤:找到要导出的程序块---->右键单击----->选择从块生成源---->可以选着一个块或关联块---->将文件保存-
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- STM32串口DMA方式向上位机连续发送接收数据
Justinlevy
stm32单片机arm
目录一、DMA初步应用1、DMA含义2、DMA传输四要素3、使用区别4、DMA的应用场景5、DMA传输方式6、DMA中断二、创建项目1、STM32CubeMX创建1.1设置SYS1.2设置RCC1.3设置USART1.4DMA设置1.5时钟设置1.6文件配置2、KEIL代码配置2.1main.c文件代码2.2while循环中代码2.3编译烧录2.4运行结果三、DMA总结四、参考一、DMA初步应用1
- 鸿蒙(HarmonyOS)性能优化实战-启动分析工具Launch Profiler 学习指南
愿天堂没有996
HarmonyOS鸿蒙开发移动开发harmonyos性能优化HarmonyOSOpenHarmony移动开发
LaunchProfiler概述DevEcoStudio内置Profiler分析调优工具。其中Launch主要用于分析应用或服务的启动耗时,分析启动周期各阶段的耗时情况、核心线程的运行情况等,协助开发者识别启动缓慢的原因。此外,Launch任务窗口还集成了Time、CPU、Frame场景分析任务的功能,方便开发者在分析启动耗时的过程中同步对比同一时段的其他资源占用情况。场景示例如下代码在页面绘制之
- Python: 如何用Python的迭代器或生成器实现斐波那契数列
KevinShi_BJ
python
斐波那契数列(Fibonaccisequence)是指这样一个数列:1,1,2,3,5,8,13,21,34,55,89...这个数列从第3项开始,每一项都等于前两项之和。斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(LeonardoFibonacci)。以兔子繁殖为例子而引入,故又称为”兔子数列“。斐波那契数列又称黄金分割数列,n越大,相邻两值的比越接近黄金分割0.618,非常有趣。百
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多