LruMemoryCache源码分析

  1. 目前在看UIL,看到了内存缓存,就纪记录下对LruMemoryCache得分析,看名字就知道他主要做得是实现内存缓存。

2.上注释代码

package com.nostra13.universalimageloader.cache.memory.impl;

import android.graphics.Bitmap;

import com.nostra13.universalimageloader.cache.memory.MemoryCache;

import java.util.Collection;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.Map;

/**
 * A cache that holds strong references to a limited number of Bitmaps. Each time a Bitmap is accessed, it is moved to
 * the head of a queue. When a Bitmap is added to a full cache, the Bitmap at the end of that queue is evicted and may
 * become eligible for garbage collection.
*
* NOTE: This cache uses only strong references for stored Bitmaps. * * @author Sergey Tarasevich (nostra13[at]gmail[dot]com) * @since 1.8.1 */ public class LruMemoryCache implements MemoryCache { //创建一个LinkedHashMap private final LinkedHashMap map; //缓存得最大内存大小 private final int maxSize; /** Size of this cache in bytes */ private int size; /** @param maxSize Maximum sum of the sizes of the Bitmaps in this cache */ public LruMemoryCache(int maxSize) { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } this.maxSize = maxSize; //LinkedHashMap他是一个双联表结构,通过在构造函数里面设置,accessOrder 为True,他就会记录访问顺序,将最新访问的元素添加到双向链表的表尾,并从原来的位置删除 //这样就可以实现将最新访问得元素,存放倒底部。 this.map = new LinkedHashMap(0, 0.75f, true); } /** * Returns the Bitmap for {@code key} if it exists in the cache. If a Bitmap was returned, it is moved to the head * of the queue. This returns null if a Bitmap is not cached. * 这个方法很简单就是取出Bitmap根据Uri */ @Override public final Bitmap get(String key) { if (key == null) { throw new NullPointerException("key == null"); } synchronized (this) { return map.get(key); } } /** Caches {@code Bitmap} for {@code key}. The Bitmap is moved to the head of the queue. */ @Override public final boolean put(String key, Bitmap value) { if (key == null || value == null) { throw new NullPointerException("key == null || value == null"); } synchronized (this) { size += sizeOf(key, value);//每次存入bitmap得时候根据bitmap获取当前bitmap得宽和高相乘得到所占得内存大小以此累加,标记存入集合bitmap得容量 Bitmap previous = map.put(key, value);//如果这个bitmap缓存中已经有了就会返回改Bitmap。 if (previous != null) { size -= sizeOf(key, previous);//改Bitmap已经存进去过,那么就减去刚次标记得大小 } } //计算删除最少使用得bitmap trimToSize(maxSize); return true; } /** * Remove the eldest entries until the total of remaining entries is at or below the requested size. * * @param maxSize the maximum size of the cache before returning. May be -1 to evict even 0-sized elements. */ private void trimToSize(int maxSize) { while (true) { String key; Bitmap value; synchronized (this) { if (size < 0 || (map.isEmpty() && size != 0)) { throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!"); } //如果当前得大小不超过指定得大小直接退出循环 if (size <= maxSize || map.isEmpty()) { break; } //获取map得栈顶最不常使用得bitmap Map.Entry toEvict = map.entrySet().iterator().next(); if (toEvict == null) { break; } key = toEvict.getKey(); value = toEvict.getValue(); map.remove(key);//删除该bitmap size -= sizeOf(key, value);//大小标记减少 } } } /** Removes the entry for {@code key} if it exists. */ @Override public final Bitmap remove(String key) { if (key == null) { throw new NullPointerException("key == null"); } synchronized (this) { Bitmap previous = map.remove(key);//删除指定得bitmap if (previous != null) { size -= sizeOf(key, previous); } return previous; } } @Override public Collection keys() { synchronized (this) { return new HashSet(map.keySet()); } } @Override public void clear() {//清空所有得缓存 trimToSize(-1); // -1 will evict 0-sized elements } /** * Returns the size {@code Bitmap} in bytes. *

* An entry's size must not change while it is in the cache. */ private int sizeOf(String key, Bitmap value) { return value.getRowBytes() * value.getHeight(); } @Override public synchronized final String toString() { return String.format("LruCache[maxSize=%d]", maxSize); } }

已经就是对源码得注释,此处好处是都实现了MemoryCache 接口,所以上层调用只要你实现MemoryCache 接口,如果有一天你觉得他这个缓存实现得不爽,你自己也可以实现自己得缓存实现,只要实现MemoryCache 接口就可以了。

已经同步在博客: https://l123456789jy.github.io/2017/03/25/LruMemoryCache源码分析/

你可能感兴趣的:(LruMemoryCache源码分析)