- C语言小任务——1000以内含有9的数字
涅槃寂雨
c语言算法开发语言
步骤第一步:分类含有九的可能的情况:个位有9,十位有9,百位有9,而根据组合数,我们可以得出,一共有7种情况,分别是9##,#9#,##9,99#,9#9,#99,999想要按照这七种情况来找,很明显十分复杂,所以,我们采用另一种方法第一步:求出小于1000的数字的每一位voidgetnum(intnum,int*arr){ inti=0; for(i=0;i#include#includ
- 自动化测试--概念篇
.比奇堡派大星.
软件测试自动化测试selenium
博主主页:码农派大星.数据结构专栏:Java数据结构数据库专栏:数据库JavaEE专栏:JavaEE软件测试专栏:软件测试关注博主带你了解更多知识目录1.⾃动化1.1自动化概念1.1.1回归测试1.2⾃动化分类接⼝⾃动化UI⾃动化1.3⾃动化测试⾦字塔2.web⾃动化测试安装驱动管理3.Selenium安装selenium库使⽤selenium编写代码selenium+驱动+浏览器的⼯作原理1.⾃
- 大模型中的分词技术 BBPE
禅与计算机技术
深度学习大模型NLP深度学习nlp中文分词机器学习
一、OOV问题和多语言场景在自然语言处理(NLP)中,OOV(Out-of-Vocabulary)问题是指模型在处理文本时遇到未在词表中出现过的词汇,导致无法有效处理这些词汇的情况。这一问题在多语言场景中尤为突出,因为不同语言在词汇、语法结构和表达方式上存在显著差异,单一语言的词表难以全面覆盖多语言的复杂性。在多语言场景下的NLP任务中(如机器翻译、跨语言文本分类等),模型需要处理多种语言的混合文
- Java常用类
ufosuai555
javapython开发语言
包装类包装类定义包装类就是将基本数据类型封装到类中,使基本数据类型具有类的特点,方便操作包装类分类byte->Byteshort->Shortint->Integerlong->Longfloat->Floatdouble->Doublechar->Characterboolean->Boolean基本数据类型与包装类之间的转换在JDK5之前,基本数据类型与包装类之间的转换需要手动编写代码实现,在
- 性能测试的指标2
吾爱乐享
性能测试性能测试指标性能测试
性能测试指标主要包括两大分类系统指标:系统指标主要包括系统的响应时间,tps,并发数等资源指标:对硬件资源的利用率,cpu,磁盘,内存等1.系统指标响应时间:从用户发送一个请求到用户接受到服务器返回到响应数据这段时间响应时间是由,网络传输时间+应用程序处理时间,一个用户发起请求-->到服务器的传输时间--->服务器处理时间--->数据库传输时间---->数据库到处理时间--->数据库处理结果传输给
- 行业模板|DataEase企业管理大屏模板推荐
FIT2CLOUD飞致云
开源数据可视化DataEase模板市场数据大屏企业管理
DataEase开源BI工具于2022年6月发布模板市场(https://templates.dataease.cn),并于2024年1月新增适用于DataEasev2版本的模板分类。模板市场旨在为DataEase用户提供专业、美观、拿来即用的大屏模板,方便用户根据自身的业务需求和使用场景选择对应的大屏模板,并且在优质模板的基础上轻松制作自己的仪表板及数据大屏。截至2024年12月18日,Data
- Python Web开发
twc829
Python
Web开发介绍一、Web开发概述1C/S结构和B/S结构C/S—Client/Server,即客户机/服务器结构B/S—Browse/Server,即浏览器/服务器结构2B/S结构的优势2.1不用通知客户端安装某个软件2.2不用通知客户端升级2.3可轻松地实现跨平台3访问网站过程用户向服务器发起请求,服务器将HTML文件返回给用户,浏览器将HTML文件渲染成用户看到的网站;4分类4.1静态网站用户
- Three.js学习笔记(一)
hzxwonder
three.jswebglthree.js
Three.js学习笔记(一)1.四大组建1.场景任何要显示的东西,放在场景的任何位置一个页面可以有多个场景实现方式THREE.Scene=function()2.相机浏览器中所能看到的东西,就是由相机拍摄出来。即将相机能看到的内容显示在浏览器画面上分类1.透视相机近大远小+灭点2.正投影相机远处和近处一样大,也称正交相机参数THREE.PerspectiveCamera=function(fov
- Python量化金融都需要用到哪些库?最全汇总
中年猿人
python金融开发语言
今天分享一篇Python量化金融最全汇总,推荐大家收藏~记得划到文末点赞呐~本文汇总了定量金融的大量三方库,按功能进行分类,覆盖数值运算,衍生品定价,回溯检验,风险管理,数据爬取,可视化等多个子领域,供每个Python程序员参考。不要重复造轮子,明确要解决的问题,然后寻找相应的工具。很多著名的包如Numpy,Pandas,Seaborn,backtrader等已经被证明高度有效,即便没有找到符合应
- 2.5英寸笔记本电脑机械硬盘拆解方法
ZhillerDev
#硬件拆解电脑
拆卸步骤先来到有电路板的一面,下图红色框内需要拆卸掉7个螺丝,而蓝色框则是单独用作固定的螺丝,也要卸下来;卸下来的螺丝务必做好分类;来到金属壳一面,这里我们需要卸下六个固定螺丝,分别位于金属壳的边角(下图红色框);与此同时你可以先尝试卸下金属壳,如果发现无法卸下,那么很可能是硬盘信息的白色卡片遮住了,你需要想我这样撕下来,找到对应的螺丝卸下来(下图蓝色框)然后你可以先把电路板卸下来,你会看到此处还
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- k8s pod分类、核心组件、网络模型、kubectl常用命令
2501_90243308
kubernetes网络容器
假如有2个pod,pod有其生命周期,万一pod所在的节点宕机了,那么此pod将应该要在其他的节点上重建,而重建完的pod与原来的pod已经不是同一个pod了,只是两者都是运行的同一个服务而已。且每个容器都有其IP地址,重建的pod中的容器其P地址与之前的pod中容器的IP地址是不一样的,如此一来就会存在一个问题,客户端如何访问这些pod中的容器呢?措施:服务发现:就比如集贸市场的注册摊位和声明地
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- LeetCode HOT-100 分类总结
悬浮海
#LeetCodeHOT100leetcode算法HOT-100分类总结
文章目录二分搜索排序滑动窗口哈希表位运算前缀和双指针图二叉树回溯贪心:动态规划:背包问题:单调栈(辅助栈):并查集LRU缓存小技巧二分搜索【NO.4】LeetCodeHOT100—4.寻找两个正序数组的中位数【NO.17】LeetCodeHOT100—33.搜索旋转排序数组【NO.18】LeetCodeHOT100—34.在排序数组中查找元素的第一个和最后一个位置排序排序方法,如果可以确定数值的范
- C++异常机制:构建健壮代码的艺术
Main. 24
c++开发语言
1.异常的概念及应用1.1.异常的概念异常处理机制允许程序中独⽴开发的部分能够在运⾏时就出现的问题进⾏通信并做出相应的处理,异常使得我们能够将问题的检测与解决问题的过程分开,程序的⼀部分负责检测问题的出现,然后解决问题的任务传递给程序的另⼀部分,检测环节⽆须知道问题的处理模块的所有细节。C语⾔主要通过错误码的形式处理错误,错误码本质就是对错误信息进⾏分类编号,拿到错误码以还要去查询错误信息,⽐较⿇
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- 【wiki知识库】05.分类管理模块--后端SpringBoot模块
熊哈哈O_o
从0到1带你搭建wiki知识库springboot后端javaspring
个人主页:哈__期待您的关注目录一、今日目标二、☀SpringBoot代码修改1.使用逆向工程生成Category表结构2.新增CategoryQueryParam3.新增CategorySaveParam4.新增CategotyQueryVo三、新增分类管理的相关接口1./category/all2./category/save3./category/delete1.我们删除的是一个二级分类2.
- MySQL专题三——MySQL函数(单行函数)
学算法,结果相对于过程不那么重要
SQLmysql数据库database
MySQL函数MySQL的内置函数分为两类:单行函数和聚合函数单行函数操作数据对象接受参数返回一个结果只对一行进行变换每行返回一个结果可以嵌套参数可以是一列或一个值单行函数分类:数值函数1.基本函数函数名函数的功能ABS(x)返回x的绝对值SIGN(x)返回x的符号。正数返回1,负数返回-1,0返回0PI()返回圆周率的值CEIL(x),CEILING(x)返回大于或等于某个值的最小整数FLOOR
- 车联网安全
黄一113530
网络安全网络安全渗透测试
1、智能汽车安全如何分类?智能汽车终极发展阶段是无人驾驶,车联网则是无人驾驶实现的基础,然而车联网技术应用过程中却会带来信息安全问题,具体可分为以下三种:一、用户隐私汽车智能化是建立在车辆动态数据收集及应用上的,如车辆行驶、车体、动力、安全及环境数据等层面,尤其是车辆行驶数据一直都被视为变现的大数据金矿,无论是车联网前装的车商,还是车联网后装的互联网科技公司,都在用户不知情的情况下收集车主驾驶历史
- 快猫视频模板源码定制开发 苹果CMS 可打包成双端APP
希希分享
快猫视频模板源码
苹果CMS快猫视频网站模板源码,可用于开发双端APP,后台支持自定义参数,包括会员升级页面、视频、演员、专题、收藏和会员系统等完整模块。还可以直接指定某个分类下的视频为免费专区,具备完善的卡密支付体系,无需人工管理和挂码。该模板提供三种播放界面,分别适用于未注册会员、普通注册会员和VIP会员,每个界面的提示内容都不同。模板适用于PC和WAP,并且可以轻松打包成APP。除了网站LOGO和自定义广告等
- 【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
IT古董
人工智能深度学习机器学习深度学习cnn人工智能
卷积神经网络(CNN)概念简介卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种专门用于处理数据具有网格状拓扑结构(如图像、语音)的深度学习模型。它通过卷积操作从输入数据中提取局部特征,并逐层构建更复杂的特征表示,广泛应用于图像分类、目标检测、语音识别等领域。关键组成部分卷积层(ConvolutionalLayer)使用卷积核(滤波器)在输入上滑动,提取局部特征。
- mysql 学习3 SQL语句--整体概述。SQL通用语法;DDL创建数据库,查看数据库,删除数据库,使用数据库;
hunandede
mysql学习sql
SQL通用语法SQL语句分类DDLdatadefinitionlanguage:用来创建数据库,创建表,创建表中的字段,创建索引。因此成为数据定义语言DMLdatamanipulationlanguage有了数据库和表以及字段后,那么我们就需要给这个表中添加数据,删除数据,改动数据,这些都是对数据有改动的行为,因此叫做数据操作语言manipulation中文是操作的意思DQLdataqueryla
- [预训练语言模型专题] 百度出品ERNIE合集,问国产预训练语言模型哪家强
yang191919
朴素人工智能百度编程语言机器学习人工智能深度学习
本文为预训练语言模型专题系列第七篇系列传送门[萌芽时代]、[风起云涌]、[文本分类通用技巧]、[GPT家族]、[BERT来临]、[BE
- 数论问题65一一整数的乘法分拆
李扩继
数据分析深度学习学习方法数学建模算法
整数的乘法分拆实质就是整数的乘法因子数分解。如18=2x9=6x3=2x3x3。整数的乘法分拆与加法分拆有密切的关联,最终用加法分拆来表示。如,a为质数,a^n的乘法分拆就是指数n的加法分拆。整数的乘法分拆相当复杂,如果弄不懂乘法分拆的实质,那么,进行乘法分拆会相当困难。首先,对于一个正整数n要进行质因数幂分解,如18=2x3^2。其次,设定抽屉,然后给抽屉中放置元素,分类进行。用f(n)表示对正
- 南方cass简码识别大全_CASS分类简码
Demeyi-邓子
南方cass简码识别大全
简码GTC码简码GTC码简码GTC码简码GTC码特殊码用法居民地类管线设施水系设施铁路设施W围墙厚度省略小数点及小数点前面的"0":砼F141111高压杆A171101水涯线S181101一般铁路H1161101"W18"表示围墙厚度为0.18米;"W-2"为-0.2米厚;混F2141161通讯杆T172001单线沟I183101建筑中铁路H2161401"W"表示画厚度为0.15米的围墙。"w-
- 2023美赛数学建模C题思路复盘,备战24美赛!
喜欢一个人_
大数据人工智能数学建模
目录2024美赛数学建模各题思路模型代码:开赛后第一时间更新,更新见文末一、2023题目重述拟解决的问题我们的工作:二、模型和计算1.数据预处理2.报告数量区间预测模型3.猜词结果分布预测模型3.词汇难度分类模型2024美赛数学建模各题思路模型代码:开赛后第一时间更新,更新见文末一、2023题目重述Homer是棒球运动中的术语,是非正式的美式英语单词。令人惊讶的是,Homer(本垒打)在剑桥词典网
- 简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
周杰伦_Jay
大模型LLMs分类数据挖掘人工智能机器学习生成对抗网络transformer算法
目录前言1、大模型的定义1.1、大模型与小模型的对比2、大模型相关概念区分2.1、基础模型(FoundationModel)2.2、超大模型(Ultra-largeModel)2.3、大语言模型(LargeLanguageModel,LLM)3、大模型的发展历程3.1、萌芽期(1950-2005)3.2、探索沉淀期(2006-2019)3.3、迅猛发展期(2020-至今)4、大模型的特点5、大模型
- 即时通讯技术文集(第42期):直播技术合集(Part2) [共13篇]
即时通讯im网络编程
为了更好地分类阅读52im.net总计1000多篇精编文章,我将在每周三推送新的一期技术文集,本次是第42期。[-1-]实时音频的混音在视频直播中的技术原理和实践总结[链接]http://www.52im.net/thread-1904-1-1.html[摘要]今天,我们就来聊一聊混音技术在视频直播应用中的实现原理、方案等,及其在创新玩法中的实践应用。[-2-]七牛云技术分享:使用QUIC协议实现
- 202年寒假充电计划——自学手册 网络安全(黑客技术)
网安康sir
web安全安全网络php开发语言
前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习导航三大章节,涉及价值观、方法论、执行力、行业分类、职位解读、法
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟