Hive 数据类型 + Hive SQL

基本类型

  • 整型
    • int tinyint (byte) smallint(short) bigint(long)
  • 浮点型
    • float double
  • 布尔
    • boolean
  • 字符
    • string char(定长) varchar(变长)
  • 时间类型
    • timestamp date

引用/复合类型

  • 优点类似于容器(Container),便于我们操作数据
  • 复合类型可以和复合类型相互嵌套
  • Array
    • 存放相同类型的数据
    • 数据按照索引进行查找,索引默认从0开始
    • user[0]
  • Map
    • 一组键值对,通过key可以访问到value
    • key不能相同,相同的key会相互覆盖
    • map['first']
  • Struct(就是C语言中的结构体, golang中也有)
    • 定义对象的属性,结构体的属性都是固定的
    • 通过属性获取值
    • user.uname

类型转换

  • 自动
    • 任何整数类型都可以隐式地转换为一个范围更广的类型
    • 所有整数类型、FLOAT和STRING类型都可以隐式地转换成DOUBLE。
    • TINYINT、SMALLINT、INT都可以转换为FLOAT。
    • BOOLEAN类型不可以转换为任何其它的类型。
  • 强制
    • CAST('1' AS INT)
  • 在设计表的时候,尽量将数据类型设置为合适的类型
  • 防止以后操作中没必要的麻烦

DDL操作--数据库

库,表,字段等命名要注意命名规范

执行数据库组件的定义(创建,修改,删除)功能

执行任何的hivesql语句在语句末尾都要加上分号(;)

数据库

  • 创建数据库

    • 每创建一张表都会在HDFS文件系统中创建一个目录

      • create database ronnie;
      • create database if not exists ronnie;
    • 创建数据库并制定存放的位置

      • create database ronnie location '/ronnie/ronnie_test;

        Hive 数据类型 + Hive SQL_第1张图片
        1569236690603
  • 删除数据库

    • drop database 库名;
    • drop database if exists 库名;
    • 如果当前库不为空,级联删除
      • drop database if exists 库名 cascade;
  • 修改数据库信息

    • 数据库的其他元数据信息都是不可更改的
      • 数据库名
      • 数据库所在的目录位置。
    • alter database ronnie set dbproperties('createtime'='20170830');[设置库属性]
  • 显示数据库

    • show databases;

      hive> show databases;
      OK
      default
      ronnie
      Time taken: 0.228 seconds, Fetched: 2 row(s)
      hive> 
      
      
  • show databases like 'r*'; [模糊匹配]
hive> show databases like'r*';
OK
ronnie
Time taken: 0.01 seconds, Fetched: 1 row(s)
hive> 

  • 查看信息

    • desc database ronnie;
  • 使用数据库

    • use ronnie;

DDL操作-表

  • 表的创建方式:表示对数据的映射,所以表示根据数据来设计的

创建表

  • 创建表写语句的时候,千万不要出现tab键,会出现乱码

  • 创建数据文件,上传到Linux

  • 创建userinfo表,会在数据库的文件夹中创建一个表名文件夹

  • 将数据载入到表中

    ronnieInfo.txt
1,luna,00000
2,slark,11111
3,sven,22222
4,anit_mage,33333
create table ronnieInfo(
id int,
uname string,
password string
)
row format delimited fields terminated by ',' lines terminated by '\n';

load data local inpath '/root/ronnieInfo.txt' overwrite into table ronnieInfo;

select * from ronnieInfo
select id from ronnieInfo where id = 2;

命令行显示:

hive> select * from ronnieInfo;
OK
1   luna    00000
2   slark   11111
3   sven    22222
4   anit_mage   33333
Time taken: 0.322 seconds, Fetched: 4 row(s)
hive> select id from ronnieInfo where id = 2;
OK
2
Time taken: 0.151 seconds, Fetched: 1 row(s)
重要指令集:
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name 
(col_name data_type [COMMENT col_comment], ...)
[COMMENT table_comment] 
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 
[CLUSTERED BY (col_name, col_name, ...) ]
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] 
[ROW FORMAT row_format] 
[STORED AS file_format] 
[LOCATION hdfs_path]
  • CREATE
    • 关键字,创建表
  • [EXTERNAL]
    • 表的类型,内部表还是外部表
  • TABLE
    • 创建的类型
  • [IF NOT EXISTS]
    • 判断这个表是否存在
  • table_name
    • 表名,要遵循命名规则
  • (col_name data_type [COMMENT col_comment], ...)
    • 定义一个列 (列名1 数据类型1,列名2 数据类型1)
    • 列与列之间用逗号隔开,最后一个列不需要加,
  • [COMMENT table_comment]
    • 表的注释信息
  • [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
    • 创建分区表
  • [CLUSTERED BY (col_name, col_name, ...)
    • 分桶
  • [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
    • 分桶
  • [ROW FORMAT row_format]
    • 每一行数据切分的格式
  • [STORED AS file_format]
    • 数据存放的格式
  • [LOCATION hdfs_path]
    • 数据文件的地址

修改表

修改表的时候文件夹也会修改名字

ALTER TABLE ronnieInfo RENAME TO ronnie_info;

更新列

ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENT col_comment][FIRST|AFTER column_name];

增加替换列

ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...);

查看表结构

desc table_name;

删除表

DROP TABLE [IF EXISTS] table_name;

例子:

1,alex,18,game-exercise-book,stu_addr:auckland-work_addr:wellington
2,john,26,shop-lib-learn,stu_addr:queensland-work_addr:sydney
3,paul,20,cook-eat,stu_addr:brisbane-work_addr:gold_coast


create table personInfo(
id int,
name string,
age int,
fav array,
addr struct
)
row format delimited fields terminated by ',' 
collection items terminated by '-' 
map keys terminated by ':' 
lines terminated by '\n';

load data local inpath '/root/personInfo.txt' overwrite into table personInfo;
select * from personInfo;

显示表:

hive> select * from personInfo;
OK
1   alex    18  ["game","exercise","book"]  {"stu_addr":"stu_addr:auckland","work_addr":"work_addr:wellington"}
2   john    26  ["shop","lib","learn"]  {"stu_addr":"stu_addr:queensland","work_addr":"work_addr:sydney"}
3   paul    20  ["cook","eat"]  {"stu_addr":"stu_addr:brisbane","work_addr":"work_addr:gold_coast"}
Time taken: 0.058 seconds, Fetched: 3 row(s)

载入数据-load

  • 数据一旦被导入就不可以被修改

    • 数据会被存放到HDFS上,HDFS不支持数据的修改
  • 语法结构

    • load data [local] inpath '/opt/module/datas/student.txt' overwrite | into table student [partition (partcol1=val1,…)];
      
      load data 固定语法
      [local] :如果有local说明分析本地数据,如果去掉local说明分析hdfs上的数据
      inpath '/opt/module/datas/student.txt' 导入数据的路径
      overwrite 新导入的数据覆盖以前的数据
      into table student 导入到那张表中
      
    • Linux

      • load data local inpath '/root/personInfo.txt' into table personInfo;
  • load data local inpath '/root/ronnieInfo.txt' overwrite into table ronnie_info;

  • HDFS

    • load data inpath '/ronnie/hive/personInfo.txt' into table personInfo;
      • load data inpath '/ronnie/hive/ronnieInfo.txt' overwrite into table ronnie_info;
    • 总结:
      • 不管数据文件在哪,只要是内部表,数据文件都会拷贝一份到数据库表的文件夹中
      • 如果是追加拷贝,查询数据的时候会查询所有的数据文件
      • 当我删除数据文件的时候

载入数据-insert

  • 查询t1表的数据插入到t2表中

    • 1,admin
      2,zs
      3,ls
      4,ww
      
      create table t1(
      id string,
      name string
      )
      row format delimited fields terminated by ','  
      lines terminated by '\n';
      
      load data local inpath '/root/t1.txt' into table t1;
      
      create table t2(
      name string
      );
      //会开启Mapreduce任务
      insert overwrite table t2 select name from t1;
      
      
      

    执行mapreduce结果:

    hive> insert overwrite table t2 select name from t1;
    Query ID = root_20190924045312_e3340ec4-55ad-4250-80c0-bf5f958eb4ab
    Total jobs = 3
    Launching Job 1 out of 3
    Number of reduce tasks is set to 0 since there's no reduce operator
    Starting Job = job_1569214475993_0001, Tracking URL = http://node03:8088/proxy/application_1569214475993_0001/
    Kill Command = /opt/ronnie/hadoop-2.6.5/bin/hadoop job  -kill job_1569214475993_0001
    Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
    2019-09-24 04:53:20,136 Stage-1 map = 0%,  reduce = 0%
    2019-09-24 04:53:27,335 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 0.96 sec
    MapReduce Total cumulative CPU time: 960 msec
    Ended Job = job_1569214475993_0001
    Stage-4 is selected by condition resolver.
    Stage-3 is filtered out by condition resolver.
    Stage-5 is filtered out by condition resolver.
    Moving data to: hdfs://ronnie/ronnie_hive/ronnie_test/t2/.hive-staging_hive_2019-09-24_04-53-12_193_1698682512625223581-1/-ext-10000
    Loading data to table ronnie.t2
    Table ronnie.t2 stats: [numFiles=1, numRows=4, totalSize=15, rawDataSize=11]
    MapReduce Jobs Launched: 
    Stage-Stage-1: Map: 1   Cumulative CPU: 0.96 sec   HDFS Read: 3008 HDFS Write: 80 SUCCESS
    Total MapReduce CPU Time Spent: 960 msec
    OK
    Time taken: 16.388 seconds
    
    
  • 将一次查询的结果放入到多张表中

    • //在上面数据的基础上
      create table t3(
      id string
      );
      
      //会开启Mapreduce任务
      from t1
      INSERT OVERWRITE TABLE t2  SELECT name 
      INSERT OVERWRITE TABLE t3  SELECT id ;
      

    MapReduce执行结果:

    Query ID = root_20190924045620_5582ef76-bbdc-4b60-b9e1-ba9e63b65865
    Total jobs = 5
    Launching Job 1 out of 5
    Number of reduce tasks is set to 0 since there's no reduce operator
    Starting Job = job_1569214475993_0002, Tracking URL = http://node03:8088/proxy/application_1569214475993_0002/
    Kill Command = /opt/ronnie/hadoop-2.6.5/bin/hadoop job  -kill job_1569214475993_0002
    Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 0
    2019-09-24 04:56:27,406 Stage-2 map = 0%,  reduce = 0%
    2019-09-24 04:56:33,559 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 1.07 sec
    MapReduce Total cumulative CPU time: 1 seconds 70 msec
    Ended Job = job_1569214475993_0002
    Stage-5 is selected by condition resolver.
    Stage-4 is filtered out by condition resolver.
    Stage-6 is filtered out by condition resolver.
    Stage-11 is selected by condition resolver.
    Stage-10 is filtered out by condition resolver.
    Stage-12 is filtered out by condition resolver.
    Moving data to: hdfs://ronnie/ronnie_hive/ronnie_test/t2/.hive-staging_hive_2019-09-24_04-56-20_574_2344930125947110148-1/-ext-10000
    Moving data to: hdfs://ronnie/ronnie_hive/ronnie_test/t3/.hive-staging_hive_2019-09-24_04-56-20_574_2344930125947110148-1/-ext-10002
    Loading data to table ronnie.t2
    Loading data to table ronnie.t3
    Table ronnie.t2 stats: [numFiles=1, numRows=0, totalSize=15, rawDataSize=0]
    Table ronnie.t3 stats: [numFiles=1, numRows=0, totalSize=8, rawDataSize=0]
    MapReduce Jobs Launched: 
    Stage-Stage-2: Map: 1   Cumulative CPU: 1.07 sec   HDFS Read: 3981 HDFS Write: 153 SUCCESS
    Total MapReduce CPU Time Spent: 1 seconds 70 msec
    OK
    Time taken: 14.425 seconds
    
    
  • 按照原始SQL数据插入的方式

    • insert into t1 values ('id','5'),('name','yyz');
      
  • 内部表与外部表

    • 内部表

      • 一般处理自己独享的数据,防止别人的误删除
      • 删除表的时候,会一起将数据文件删除
      • 内部表不适合和其他工具共享数据。
    • 外部表

      • 可以和别的表共享数据
      • 删除表的时候,不会将数据文件删除
      create EXTERNAL table ronnie_ex(
      id int,
      name string,
      age int,
      fav array,
      addr struct
      )
      row format delimited fields terminated by ',' 
      collection items terminated by '-' 
      map keys terminated by ':' 
      lines terminated by '\n';
      
      //加载本地文件到外部表,文件会保存到表文件夹
      load data local inpath '/root/ronnie_ex.txt' into table ronnie_ex;
      //加载HDFS到外部表,依然会并拷贝一份到表文件夹
      load data inpath '/ex/ronnie_ex.txt' into table ronnie_ex;
      
      • 为了数据的共享,可以将外部表地址直接设置到数据地址

        • create EXTERNAL table ronnie_ex_location(
          id int,
          name string,
          age int,
          fav array,
          addr struct
          )
          row format delimited fields terminated by ',' 
          collection items terminated by '-' 
          map keys terminated by ':' 
          lines terminated by '\n'
          location '/ronnie/ex';
          
        • 外部表与内部表的切换(内-->外)

          • alter table personInfo set tblproperties('EXTERNAL'='TRUE');
          • alter table personInfo set tblproperties('EXTERNAL'='FALSE');

      表的地址

      • 修改表数据的存放地址
      • 创建表的时候,会预先清空改文件夹中所有的数据
      create table ronnieUserPath111(
      id int,
      name string,
      age int,
      fav array,
      addr struct
      )
      row format delimited fields terminated by ',' 
      collection items terminated by '-' 
      map keys terminated by ':' 
      lines terminated by '\n'
      location '/ronnie/ex';
      

      数据导出

      • 将查询的结果导出到本地

        • insert overwrite local directory '/root/t11' select * from t1;
      • 将查询的结果格式化导出到本地

        • insert overwrite local directory '/root/t12'

          ​ ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' select * from t1;

      • 将查询的结果导出到HDFS上

        • insert overwrite local directory '/ronnie/t13' select * from t1;
      • 使用export/import导出数据

        • export table t1 to '/ronnie/hive/t1';
        • import from '/ronnie/hive/t1';

你可能感兴趣的:(Hive 数据类型 + Hive SQL)