- 毕业论文代码实验(Python\MATLAB)基于K-means聚类的EMD-BiLSTM-Attention光伏功率预测模型
清风AI
毕业设计代码实现pythonlstm深度学习神经网络人工智能matlabpytorch
一、项目背景1.1光伏功率预测意义在能源结构转型背景下(国家能源局2025规划),光伏发电渗透率已超过18%。但受天气突变、云层遮挡等因素影响,光伏出力具有显著波动性,导致:电网调度难度增加(±15%功率波动)电力市场交易风险提升光储协同控制效率降低1.2技术挑战多尺度特征耦合:分钟级辐照度变化与小时级天气模式共存非线性映射关系:气象因素与发电功率呈高阶非线性关系数据模态差异:数值天气预报(NWP
- DeepSeek 部署指南 (使用 vLLM 本地部署)
AGI大模型资料分享员
人工智能语言模型学习chatgpt深度学习大模型deepseek
DeepSeek部署指南(使用vLLM本地部署)本文档将指导您如何使用vLLM在本地部署DeepSeek语言模型。我们以deepseek-ai/DeepSeek-R1-Distill-Qwen-7B模型为例进行演示。1、安装Python环境首先,您需要安装Python环境。访问Python官网:https://www.python.org/根据您的操作系统选择安装包:Python官网提供Windo
- LLM-Agent方法评估与效果分析
agent人工智能ai开发
1.引言近年来,随着大型语言模型(LLM)的快速发展,基于强化学习(RL)对LLM进行微调以使其具备代理(Agent)能力成为研究热点。从基础的单智能体强化学习算法(如PPO)到多智能体协作、语料重组以及在线自学习等新技术不断涌现,研究人员致力于探索如何提高LLM在实际应用中的决策能力、推理能力和任务执行效率。本文主要聚焦于当前LLM-Agent方法的检索与评估,旨在全面探讨各类方法的技术实现、实
- 大模型学习-让其他电脑可访问本地ollama的模型并进行流式响应
Gratitute_林腾
大模型学习学习语言模型
目录让其他电脑可访问本地ollama流式响应让其他电脑可访问本地ollama默认情况下,其他电脑不能直接访问本地Ollama服务。解决方法:让Ollama监听局域网地址,而不是localhost我们可以让Ollama监听局域网IP,在Ollama服务器上运行:setOLLAMA_HOST=0.0.0.0:11434ollamaserve注意:这种方式只对当前CMD窗口有效,关闭窗口后就会失效。如果
- 软件工程简答题整理
~进无止境~
软件工程软件工程简答题
软件工程考试简答题整理瀑布模型是软件工程中应用最广泛的过程模型,试述采用瀑布模型进行软件开发的基本过程,该过程有何特点?答:1.基本过程:瀑布模型规定了各项软件工程活动,包括需求分析、规格说明、设计、编码、测试和维护,并规定了它们自上而下、相互衔接的固定次序,如同瀑布流水,逐级而下。2.特点阶段间具有顺序性和依赖性;清楚区分逻辑设计和物理设计,尽可能推迟程序的物理实现;每个阶段都必须完成规定的文档
- OSI七层模型
_洛_神
网络协议
OSI七层模型传输过程当你在微信上发送一句“你吃了吗”时,这条消息会经历一个从你的手机到接收者手机的复杂旅程。这个过程涉及到网络通信中的七层模型,即OSI(开放系统互连)模型。每一层都有特定的功能,并且在这个过程中,信息会被逐步封装成适合网络传输的形式。等到达目的地后,再一层层解开,最终呈现给接收者。一、OSI七层模型简介:物理层-负责定义物理连接的电气、机械、过程和功能特性,如电压水平、电缆规格
- 大规异构集群 混合并行分布式训练系统,解决算力不均衡问题 HETHUB
爱串门的小马驹
万卡大规模集群大模型训练异构集群大规模集群分布式大模型训练
视频教程在这:3.2大规模异构集群,混合并行分布式系统,解释算力不均衡问题HETHUB_哔哩哔哩_bilibili一、大规模异构集群出现的原因:同一种GPU数量有限难以构建大规模集群:训练大规模模型依赖于大量的计算资源。例如,训练GPT-4模型(1.8万亿个参数)需要25000个A100GPU。用一种GPU加速器构建大规模集群是一个挑战。使用多种类型的GPU加速器构建大规模集群是解决同构GPU加速
- 软件工程简答
Ruannn(努力版)
软件工程
什么是软件工程软件工程:将系统化的、规范的、可量化的方法应用于软件的开发、运行和维护,即将工程化方法应用于软件。支持软件工程的根基在于质量关注点。软件工程的基础是过程层,将各个技术层次结合在一起。方法层为构建软件提供技术上的解决方法。工具层为过程和方法提供自动化或半自动化的支持。通用过程模型的定义内容通⽤过程框架定义了5种框架活动——沟通、策划、建模、构建以及部署。⼀系列普适性活动——项⽬跟踪控制
- 【架构设计】前置知识
GIS程序媛—椰子
架构设计架构设计
架构设计是软件开发的进阶技能,需要结合理论知识和实践经验。以下是掌握架构设计所需的前置知识及其重要性,以及学习路径建议:一、基础编程能力1.编程语言与核心概念掌握至少一门主流语言(如Java、Python、C#、Go等),理解其语法、特性及生态。核心概念:面向对象(OOP)、函数式编程(FP)、并发/异步、内存管理等。示例:通过Java理解接口、多态、设计模式。通过Go学习并发模型(Gorouti
- Windows faster whisper GUI-v0.8.5-开源版[AI支持超过100种语言的人声分离/声音转文本字幕]
私人珍藏库
whisperWindowsfasterwhisper人声分离声音转文本
WindowsfasterwhisperGUI链接:https://pan.xunlei.com/s/VOLwhsGJ1Rt5b24AhoPL8wvKA1?pwd=vydu#WindowsfasterwhisperGUI-v0.8.5-开源版[AI支持超过100种语言的人声分离/声音转文本字幕]whisperX+faster-whisper+Demucs把模型下载,然后加载模型用就好了,实在不会的
- LLM 大模型技术知识最佳学习路径图发布!
AGI-杠哥
学习人工智能语言模型agi自然语言处理
近日,经常有小伙伴私信我,大模型知识太多了,有点懵啊,我该如何学习LLM大模型?今天我们就来剖析下LLM大模型技术知识的学习路径。如果你是一个LLM大模型的“技术小白”,我们建议的学习路径如下:技术交流群前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~我们建了大模型技术与面试交流群
- Python异步编程:从基础到高级
CarlowZJ
python网络数据库
前言在现代软件开发中,异步编程已经成为一种必不可少的技能。Python的异步编程模型(基于asyncio)为开发者提供了一种高效的方式来处理高并发任务,而无需依赖多线程或多进程。异步编程不仅可以提高程序的性能,还能简化并发代码的复杂性。本文将带你从异步编程的基础概念出发,逐步深入到高级应用,帮助你掌握Python异步编程的核心技能。一、异步编程的基础概念1.1什么是异步编程?异步编程是一种编程范式
- 基于Linux的多进程并发服务器设计与实现
名誉寒冰
服务器linuxc++
基于Linux的多进程并发服务器设计与实现简介本项目实现了一个基于Linux的多进程并发服务器框架,采用进程池技术提高服务器并发处理能力,主要用于文件传输服务。该框架利用了Unix域套接字、管道通信、文件描述符传递和epoll机制等技术,实现了高效的任务分发和并发处理。系统架构该服务器采用主-从进程模型(Master-Worker模式):主进程(Master进程):负责监听客户端连接请求,并将连接
- MiniMind:完全从 0 训练自己的大模型
三花AI
三花AI人工智能LLM大模型
是B站UP主近在远方的远开源的一个微型语言模型,改进自DeepSeek-V2、Llama3结构,项目包含整个数据处理、pretrain、sft、dpo的全部阶段,包含混合专家(MoE)模型。其目标是把上手LLM的门槛无限降低,直接从0开始训练一个极其轻量的语言模型,最低仅需2G显卡即可推理训练!
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- MiniMind:3小时完全从0训练一个仅有26M的小参数GPT,最低仅需2G显卡即可推理训练!
哈罗·沃德
LLMgpt
MiniMind:3小时完全从0训练一个仅有26M的小参数GPT,最低仅需2G显卡即可推理训练!概述MiniMind是一个开源的微型语言模型,它的设计目标是让个人GPU用户也能够快速推理甚至训练语言模型。它的体积仅为26M,大约是GPT3的1/7000,非常适合快速部署和实验。https://github.com/user-attachments/assets/88b98128-636e-43bc
- 跟着黑马学MySQL基础篇笔记(1)-概述与SQL
小杜不吃糖
mysql笔记sql
03.安装与启动启动netstartmysql80netstopmysql80客户端连接mysql[-h127.0.0.1][-P3306]-uroot-p04.mysql数据模型关系型数据库RDBMS05.通用语法及分类DDL:数据定义语言,用来定义数据库对象(数据库,表,字段)DML:数据操作语言,用来对数据库表中的数据进行增删改DQL:数据查询语言,用来查询数据库中表的记录DCL:数据控制语
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- 集成学习(上):Bagging集成方法
万事可爱^
机器学习修仙之旅#监督学习集成学习机器学习人工智能Bagging随机森林
一、什么是集成学习?在机器学习的世界里,没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象",单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来,就能像拼图一样还原出完整的真相,接下来我们就来介绍一种“拼图”算法——集成学习。集成学习是一种机器学习技术,它通过组合多个模型(通常称为“弱学习器”或“基础模型”)的预测结果,构建出更强、更准确的学习算法。这种方法的主要思想是
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混
一个处女座的程序猿
NLP/LLMsCaseCodetransformerminimind预训练
LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混合精度优化/梯度累积/梯度裁剪/定期保存模型目录minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/
- 模型部署后的版本回滚策略,如何确保服务降级的平滑性?
百态老人
neo4j
模型部署版本回滚策略与平滑服务降级技术体系(2025版)一、核心设计原则与架构模型部署回滚的平滑性需建立在版本隔离性、流量可控性、数据兼容性三大支柱上,结合2025年前沿技术实现多维保障:
- easyswoole学习记录
司江龙
swoolePHPeasyswooleswoole
php-fpm的工作方式php-fpm就是php-fastcgi进程管理器主要工作的就是mastr进程,主要和linux进行一个协调,当请求从nginx到fpm的时候,master会把请求交给自己下面管理的子进程一个池模型,问题:一个work进程内只会处理一个请求,也就是说这个进程内在同一时刻只会处理一个request请求,不会处理多个,所以一台服务器的并发数就取决于服务器开启了多少个work进程
- Django系列教程(15)——上传文件
l软件定制开发工作室
Django教程djangookhttppython
目录Django文件上传需要考虑的重要事项Django文件上传的3种常见方式项目创建与设置创建模型URLConf配置使用一般表单上传文件使用ModelForm上传文件Django文件上传需要考虑的重要事项文件或图片一般通过表单进行。用户在前端点击文件上传,然后以POST方式将数据和文件提交到服务器。服务器在接收到POST请求后需要将其存储在服务器上的某个地方。Django默认的存储地址是相对于根目
- DeepSpeed-Chat:Reward Model【奖励模型】
u013250861
#LLM/训练RL/强化学习排序强化学习
第二阶段:奖励模型微调奖励模型(RM)微调类似于第一阶段有监督微调(SFT)。但是,RM和SFT微调之间存在几个关键差异:训练数据差异:对于SFT微调,数据是查询(query)和答案(answer)拼接在一起。然而,对于RM微调,每批数据由两个查询-答案对组成,即具有高分答案和低分答案的相同查询。这也导致了如下所述的第二个差异。训练目标差异:对于RW,训练目标是pairwiserankingsco
- 【人工智能】大模型的幻觉问题:DeepSeek 的解决策略与实践
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界大语言模型(LLM)的“幻觉”问题,即模型生成与事实不符或脱离上下文的内容,是限制其广泛应用的关键挑战之一。本文深入探讨了幻觉问题的成因,包括训练数据的偏差、推理过程中的过度泛化以及缺乏外部验证机制。以DeepSeek系列模型为研究对象,我们分析了其在解
- 高效利用AI处理大型编程任务
大囚长
大模型人工智能
在大型编程任务中,通过将任务细分为适合AI上下文处理能力的子任务并整合生成目标应用,已成为当前AI辅助开发的主流方法。一、任务分解的核心策略模块化功能拆分通过分层架构设计将系统拆分为独立模块(如用户认证、支付接口、数据存储),每个模块的代码量控制在AI模型的上下文窗口内(如ClaudeMax的200k窗口可处理约2万行代码)。例如开发电商系统时,可分解为「购物车逻辑」「库存管理」「订单流水」等子模
- 黑客攻击deepseek服务原理解析
大囚长
大模型机器学习黑客帝国人工智能
黑客可通过操纵大模型的连续对话上下文回顾机制,构造恶意请求以触发模型进入无限思考循环或超长上下文处理,从而形成对对话服务的DoS攻击(拒绝服务攻击)。这一攻击方式的核心在于利用大模型对上下文处理机制的脆弱性,通过极低的攻击成本实现资源耗尽。一、攻击原理与实现路径无限推理循环攻击通过输入特定构造的提示词(如“树中两条路径之间的距离”),诱导模型陷入无限思考链(Chain-of-Thought,CoT
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR