远程通过jupyter(ipython) notebook调用服务器环境运行Spark(pyspark+scala方式)

第一步,ipython调用pyspark

步骤可以参考这里,
生成 notebook 配置文件

jupyter notebook --generate-config

修改生成 的notebook 配置文件

vi ~/.jupyter/jupyter_notebook_config.py

c.NotebookApp.ip = '1xx.xxx.xxx.xxx'
如果想外网也可以访问,ip 就设为外网 IP 地址,否则就设为127.0.0.1,代表本机访问。

报错:Unrecognized alias: '--profile=pyspark', it will probably have no effect.
原因:
“ipython has moved to version 5.0,which means that if you are using it,it will be reading its configuraiton from ~/.jupyter,not ~/.ipython
You have to create a new configuration file with
jupyter notebook --generate-config
and then edit the resulting
~/.jupyter/jupyter_notebook_config.py .”
简单意思就是:ipython版本在5.0之后,配置目录为~/.jupyter,而不是 ~/.ipython
修改

vi ~/.jupyter/jupyter_notebook_config.py

修改 c.NotebookApp.ip = '127.0.0.1'。
如果想外网也可以访问,ip 就设为外网 IP 地址
启动

jupyter-notebook --config='~/.jupyter/jupyter_notebook_config.py'

在jupyter上测试pyspark,创建SparkContext对象

import findspark
import os
findspark.init()
import pyspark
sc = pyspark.SparkContext()

第二步,为ipython添加scala的kernel:

基本思路,参考这里:

#添加toree
pip install toree
#配置spark目录
jupyter toree install --spark_home=your-spark-home

这里的spark-home:
也就是你进入/opt/spark-2.0.0-bin-hadoop2.7/sbin,可以

#停止spark
./stop-all.sh
#启动spark
./start-all.sh

上面的your-spark-home就是/opt/spark-2.0.0-bin-hadoop2.7/
查看kernels列表:

jupyter kernelspec list

结果:

image.png

启动jupyter

jupyter-notebook --config='~/.jupyter/jupyter_notebook_config.py'

报错如下:

java.lang.NoSuchMethodError: scala.collection.immutable.HashSet$.empty()Lscala/collection/immutable/HashSet;

这里在查找解决办法的过程上,出了个小插曲,尝试jupyter官网一个方法的时候,遇到了sbt的问题
sbt: command not found
sbt:Getting org.scala-sbt sbt 0.13.6
多次折腾之后,无法解决,决定重新配置。

第三步,仍然无法解决问题,决定重新配置(所以其实可以直接从这里开始。。。)

先把kernel全部删除,首先查看kernel的详情和安装路径:

jupyter kernelspec list
远程通过jupyter(ipython) notebook调用服务器环境运行Spark(pyspark+scala方式)_第1张图片
kernel 路径详情

将kernels目录下的都删除,但不删除kernels目录本身

#下面的 /root/.local/share/jupyter/kernels/,对应本机的kernel路径,然后最后的'*'代表该目录下全删除。
rm -rf /root/.local/share/jupyter/kernels/*

然后卸载toree

pip uninstall toree

3.1、安装toree方法a
在这个问题下发现当环境配置为:spark 2.0 +2.11scala,应该安装toree的版本为toree 0.2.0.dev1此方法需要 python 2.7 +conda,
如图

远程通过jupyter(ipython) notebook调用服务器环境运行Spark(pyspark+scala方式)_第2张图片
anaconda下的toree

按提示输入命令:

pip install -i https://pypi.anaconda.org/hyoon/simple toree

3.2、安装toree方法b
如果没有 python 2.7 & conda,就下载tgz文件然后

tar zxvf toree-0.2.0.dev1.tar.gz
pip install -e toree-0.2.0.dev1

3.3、安装toree方法c

wget https://dist.apache.org/repos/dist/dev/incubator/toree/0.2.0/snapshots/dev1/toree-pip/toree-0.2.0.dev1.tar.gz
pip install toree-0.2.0.dev1.tar.gz

3.4、toree安装完成后,配置kernel
重新装好toree后,重新将spark目录配置给jupyter toree:

jupyter toree install --spark_home=/opt/spark-2.0.0-bin-hadoop2.7

检查一下现在的kernel列表:

jupyter kernelspec list

启动jupyter:

jupyter-notebook --config='~/.jupyter/jupyter_notebook_config.py'

3.5、出错为:Unsupported major.minor version 52.0的解决办法
报错如下:

Exception in thread "main" java.lang.UnsupportedClassVersionError: com/typesafe/config/ConfigMergeable : Unsupported major.minor version 52.0

出错原因为:Unsupported major.minor version 52.0
经分析,问题应该出在版本不对应,
查阅资料:

Java SE 9 = 53,
Java SE 8 = 52,
Java SE 7 = 51,
Java SE 6.0 = 50,
Java SE 5.0 = 49,
JDK 1.4 = 48,
JDK 1.3 = 47,
JDK 1.2 = 46,
JDK 1.1 = 45

检查版本情况:
Java版本:

java -version

结果:

java version "1.8.0_151"
Java(TM) SE Runtime Environment (build 1.8.0_151-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

javac版本

javac -version

结果:

javac 1.8.0_121

检查是否有多个java JDK被安装,

sudo update-alternatives --config javac 

结果

There is 1 program that provides 'javac'.

  Selection    Command
-----------------------------------------------
*+ 1           java-1.8.0-openjdk.x86_64 (/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.121-0.b13.el7_3.x86_64/bin/javac)

以本机为例,root用户检查/etc/profile文件

vim /etc/profile

远程通过jupyter(ipython) notebook调用服务器环境运行Spark(pyspark+scala方式)_第3张图片
/etc/profile文件

可以看到这里的JAVA_HOME JAVA_BIN配置均为jdk1.8.0.151
判断应该出在spark的Java版本和本机java版本不对应的问题
参考这里: spark提交jar包时出现unsupported major.minor version 52.0错误的解决方案
检查spark安装conf目录下的spark-env.sh文件

vim /otp/spark-2.0.0-bin-hadoop2.7/conf/spark-env.sh

结果:


远程通过jupyter(ipython) notebook调用服务器环境运行Spark(pyspark+scala方式)_第4张图片
spark-env.sh文件

果然这里的java路径配置出错,和系统的环境/etc/profile文件不一致,应该是之前学弟在旧版本java时候配置的,将/etc/profile文件的JAVA_HOME和JAVA_BIN粘贴过来,保存。

查看/usr/java目录

java路径

这里应该是有一个学弟之前配置spark环境,尝试了jdk1.7和jdk1.8发现jdk1.7会和spark2.0.0不兼容。然而他的工作并没有留下文档和日志之类的,这里严重体现了工作记录得重要性!!!

重新启动jupyter,终于成功了。
本机环境版本:
linux(centos)+jdk1.8+Spark 2.0.0+Scala 2.11.8+hadoop 2.7.3+ Python 2.7.12 |Anaconda 4.2.0 (64-bit)
参考文章:
https://m.2cto.com/kf/201611/566880.html
https://www.cnblogs.com/NaughtyBaby/p/5469469.html
http://blog.csdn.net/u012948976/article/details/52372644
http://blog.csdn.net/qq_30901367/article/details/73296887
http://blog.csdn.net/xmo_jiao/article/details/72674687?utm_source=itdadao&utm_medium=referral
https://datascience.stackexchange.com/questions/6555/issue-with-ipython-jupyter-on-spark-unrecognized-alias
https://issues.apache.org/jira/browse/TOREE-354
http://blog.csdn.net/qq_30901367/article/details/73296887
https://stackoverflow.com/questions/39535858/installing-scala-kernel-or-spark-toree-for-jupyter-anaconda
http://jupyter-client.readthedocs.io/en/latest/kernels.html#kernelspecs
https://www.cnblogs.com/liujStudy/p/7217480.html

你可能感兴趣的:(远程通过jupyter(ipython) notebook调用服务器环境运行Spark(pyspark+scala方式))