- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- 准确率(Precision)和召回率(Recall)
asdfg1258963
目标检测_ai机器学习算法人工智能
准确率(Precision)定义:准确率是指在模型预测为正的样本中,真正为正的样本所占的比例。它关注的是模型预测的准确性。计算公式:Precision=TPTP+FP\text{Precision}=\frac{\text{TP}}{\text{TP}+\text{FP}}Precision=TP+FPTP其中:TP(TruePositive):真正例,模型正确预测为正的样本数。FP(FalseP
- 深入浅出C++ STL:统领STL全局
有梦想的电信狗
《C++语法精粹》——c++stl数据结构算法开发语言idevisualstudio
深入浅出C++STL:统领STL全局深入浅出C++STL:统领STL全局github主页地址前言一、STL的前世今生1.1什么是STL?1.2STL版本演进二、STL六大核心组件详解2.1容器(Containers)容器性能对照表2.2算法(Algorithms)2.3迭代器(Iterators)2.4仿函数(Functors)2.5适配器(Adapters)2.6空间配置器(Allocators
- zerotier搭建moon模式
zetion_3
network运维
最近发现zerotier内网穿透在和家里nas存储交互网速好像不怎么样,于是想搞个moon看看是不是会有所改善先决条件建议:有一台云服务器,很多童鞋说要钱,刚刚白piao了一百度云的服务器,一年只要38RMB,配置CentOS7.9-1C1G1M带宽(moon模式服务器只是做转发所以不用担心),至于怎么piao就是新用户福利,能够搞2台。这里就不赘述,不懂可以留言。好了,云服到手开始:一、安装ze
- TypeScript:为什么应该停止使用 Enum?
代码里的小猫咪
TypeScriptenum枚举
1.官方是否真的不推荐Enum?官方并没有直接说不推荐使用enum,但TypeScript团队确实在新版本中推出了一些配置和特性,使得enum在某些情况下不再是最佳选择,这导致许多开发者开始讨论“官方是不是在逐步削弱enum?”1.1事情的起因TypeScript5.5引入了--erasableSyntaxOnly这个新的编译选项。作用是:强制TypeScript代码只使用“可擦除”的类型语法,即
- OSPF总结
nihuhui666
网络ospf网络协议
OSPF–开放式最短路径优先协议1.选路–应为ospf是链路状态协议,收集拓扑信息之后将图形结构通过SPF算法转化为树形结构,计算出的路径不会有环路,并且以带宽作为开销的评判标准,所以OSPF选路优于rip2.收敛–因为OSPF的计数器短与rip,所以收敛快3.占用资源–从单一数据包角度来说,因为rip传递的是路由信息,所以资源占用不大而ospf传递拓扑信息,从单个数据包角度说,大于rip.但是o
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- 算法在各领域的广泛应用:100 个实例全解析
软件职业规划
AI&模型算法
一、互联网与信息技术领域搜索引擎算法:如谷歌的PageRank算法,用于根据网页的重要性和相关性对搜索结果进行排序,帮助用户快速找到所需信息。推荐系统算法:例如亚马逊和Netflix使用的协同过滤算法。根据用户的历史行为(购买、观看记录等)和其他相似用户的偏好,为用户推荐可能感兴趣的产品或内容。社交网络分析算法:用于分析社交网络中的用户关系,如Facebook通过算法发现用户的好友推荐、社区划分等
- 机器学习-----决策树
多巴胺与内啡肽.
机器学习机器学习决策树人工智能
文章目录1、概念2.决策树的构建过程2.1特征选择2.2树的生成2.3树的剪枝3.决策树的优缺点4.决策树的应用4.1分类任务4.2回归任务4.3集成学习代码示例总结1、概念1.1决策树是什么决策树是通过对样本的训练,建立出分类规则,并对新样本进行预测,属于有监督学习。根节点:最上面的节点。叶子节点:能直接看到结果的节点。非叶子节点:位于中间的节点。1.2决策树的类型分类树:用于分类任务,叶节点代
- C++深入浅出(六)—— 模板初阶
Albert Edison
深入C++世界c++开发语言类模板函数模板
文章目录1.泛型编程2.函数模板概念格式原理实例化隐式实例化显示实例化模板参数的匹配原则原则一原则二原则三3.类模板格式类模板的实例化1.泛型编程还记得在C语言中,如何实现交换两个对象的函数嘛?代码示例//交换两个整型变量voidSwap1(int*p1,int*p2){inttmp=*p1;
- 写给时间紧迫的软考高项考生:从真题、论文、资料到刷题
指尖疯
软考中高项大讲堂信息系统项目管理师软考高项
距离软考高项考试仅剩不到80天,备考时间紧迫,容错空间极小。有疯友建议让我写写备考的误区都有哪些,特别是致命的,毕竟前面提到过了,容错空间极小!今天就来系统聊聊这个话题。其实备考的误区有很多,但是致命的不能太多,所以我只说4个致命误区。误区一:按部就班学教材,脱离考试实战需求这个误区很常见,经常发生在追求完美的伙伴身上,哈哈。很多伙伴认为“教材学完=考试无忧”,于是花数月时间,逐页啃《信息系统项目
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 我与DeepSeek读《大型网站技术架构》- (15+16) 网站架构师职场攻略
诺亚凹凸曼
架构
文章目录第15章网站架构师职场攻略15.1发现问题,寻找突破15.2提出问题,寻求支持第16章漫话网站架构师16.1按作用划分架构师16.2按效果划分架构师16.3按职责角色划分架构师16.4按关注层次划分架构师16.5按口碑划分架构师16.6非主流方式划分架构师第15章网站架构师职场攻略15.1发现问题,寻找突破突破视角:①“局外人观察”:新人可通过跳出业务惯性,发现被长期忽略的冗余流程(如手动
- 我与DeepSeek读《大型网站技术架构》(14)- 架构师领导艺术
诺亚凹凸曼
架构
文章目录架构师领导艺术以人为本:激发团队潜能开放式协作:打破架构“所有权”壁垒妥协的艺术:聚焦核心目标成就他人:构建持续进化团队高效沟通:建立技术与人性的平衡架构师领导艺术本章聚焦架构师如何通过团队协作与领导策略构建高效技术体系,核心思想可归纳为以下维度:以人为本:激发团队潜能核心理念:构建优秀团队的关键是激发成员自我驱动力而非依赖流程管控。目标驱动:通过清晰的愿景(如产品蓝图)使团队理解工作价值
- 我与DeepSeek读《大型网站技术架构》(6)- 上
诺亚凹凸曼
架构
永无止境:网站的伸缩性架构伸缩性定义与实现目标网站的伸缩性指通过增减服务器数量灵活调整服务能力,而无需改变软硬件设计。核心目标是实现线性扩容,即新增服务器数量与系统处理能力成正比。两种基本伸缩设计手段(1)物理分离功能实现伸缩纵向分层:将系统按功能分层(如应用层、数据层),分离到不同服务器集群。例如:将数据库服务与应用程序服务器分离。横向分业务:将不同业务模块(如用户系统、支付系统)部署到独立的服
- 数字孪生对于新基建的价值浅析,算是抛砖引玉。
大牛工控设计师
人工智能信息可视化前端
数字孪生(DigitalTwin)作为一项融合物理世界与数字世界的关键技术,在新基建中扮演着虚实协同、智能决策、全生命周期管理的核心角色,其价值贯穿于基础设施的设计、建设、运维到优化全流程。一、核心价值:虚实映射与智能决策实时动态映射通过传感器、IoT设备实时采集物理实体(如工厂、城市、电网)的运行数据,构建高精度虚拟模型,实现**“所见即所控”**的透明化管理。模拟预测与优化利用AI和大数据分析
- 【第六节】windows sdk编程:Windows 中的资源
攻城狮7号
Windows编程(C++)windowsc++windows编程windowssdk
引言资源是Windows应用程序图形用户界面(GUI)的重要组成部分,它们是应用程序中使用的各类数据,如光标、位图、图标、加速键、菜单、字符串和对话框等。这些数据在编译后会被包含在EXE文件中。虽然无法直接定位和操作资源,但可以通过相关函数来获取和操作这些资源。一、光标资源1.1应用程序操作光标资源的步骤(1)选择或创建光标形式可以使用Windows系统提供的光标,也可以通过图形编辑工具自定义光标
- HuggingFace下载模型并导入Ollama指南
Repetion_Maxumim
embedding语言模型人工智能自然语言处理ai
此处以moka-ai/m3e-base模型下载为例。众所周知,HuggingFace仓库托管了诸多训练模型。DeepSeek官方也将完整满血版DeepSeek-R1:671B模型镜像托管在此仓库,但是目前国内无法直接从HugingFace下载。并且,一般为了快速部署,会选择Ollama这类管模型管理工具,类似Docker引擎一样,但是Ollama支持的模型镜像格式(如GGUF)HuggingFac
- Python 爬虫实战:游戏论坛评论数据抓取与游戏热度分析
西攻城狮北
python开发语言爬虫
一、引言随着电子游戏产业的飞速发展,游戏论坛成为了玩家交流心得、分享体验的重要平台。通过分析游戏论坛的评论数据,我们可以了解不同游戏的热度、玩家的评价以及游戏的受欢迎程度。本文将详细介绍如何使用Python爬虫技术抓取游戏论坛的评论数据,并进行游戏热度分析。二、项目背景与目标2.1项目背景游戏论坛如Steam社区、贴吧、NGA等,拥有大量的用户和丰富的评论数据。这些数据反映了玩家对不同游戏的评价和
- Java Spring Boot 常用技术及核心注解
微笑的曙光(StevenLi)
JAVAjavaspringboot开发语言
一、常用技术自动配置(Auto-Configuration)SpringBoot根据类路径中的依赖自动配置应用程序。例如,引入spring-boot-starter-web会自动配置内嵌Tomcat和SpringMVC。@EnableAutoConfiguration//启用自动配置起步依赖(StarterDependencies)通过预定义的依赖集合(如spring-boot-starter-d
- MySql数据库等级考试学习分享3(Day7)
weixin_53545579
学习
活动发起人@小虚竹想对你说:这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你参加为期14天的创作挑战赛!提醒:在发布作品前,请将不需要的内容删除。题目以下关于MySQL的叙述中,错误的是()。OA、MySQL为多种编程语
- Cesium高级开发教程之四十八:包络分析
CesiumMaster
Cesium开发教程javascriptCesiumhtml
一、原理包络分析是一种用于确定一组数据点或对象的外包络或边界的分析方法,在GIS中,包络分析用于确定地理要素(如点、线、面等)的外包络范围。例如,在城市规划中,对一片区域内的建筑物、道路等地理要素进行包络分析,可以得到这片区域的大致边界范围,以便进行土地利用规划、资源分配等工作。还可用于分析野生动物的栖息地范围,通过对动物活动轨迹点进行包络分析,确定其栖息地的边界,为野生动物保护提供决策支持。二、
- Langchain链式开发:打造高效、可扩展的AI应用
小南AI学院
langchain人工智能软件工程
1.Langchain链是什么?Langchain是一个开源框架,专门用于开发基于大型语言模型(LLMs)的应用程序。它允许开发者将各种组件(如模型、数据源、工具等)连接在一起,构建复杂的AI应用程序。“链”(Chain)在Langchain中是一个核心概念,它代表了多个组件的有序连接,用于完成特定任务。2.Langchain链的职责是什么?Langchain链的主要职责包括:流程编排:管理多个组
- springboot 整合 elk (Elasticsearch+Logstash+Kibana)
高大王竟然被注册
spring运维
Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。Logstash是一个完全开源的工具,他可以对你的日志进行收集、过滤,并将其存储供以后使用(如,搜索)。Kibana也是一个开源和免费的工具,它Kibana可以为Logstash和ElasticSearch提供的日志分析友好的Web界
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- 小白十分钟速通 Spring Boot 基础
Gao_雪
Springspringboot后端javaspringvscode
SpringBoot介绍随着Spring体系的不断庞大,加上现代互联网应用体积庞大,构建一个应用还是非常困难的,Spring团队重新打造了一个新的面向微服务的框架SpringBoot。严格来说SpringBoot不能是一个框架,它更是一个方案,Spring工程的快速上手方案,它极大的降低了JavaWeb工程的创建和运行和部署的难度。在过去这些都是Java工程师的老大难,所以说SpringBoot的
- 模型量化 (Model Quantization) 算法 (Model Quantization Algorithms)
(initial)
大模型科普算法人工智能量化
1模型量化的必要性:降低模型大小、加速推理、减少资源消耗随着深度学习模型的日益复杂和庞大,其在资源受限的设备(如移动端、嵌入式设备)上的部署面临着巨大的挑战。即使在服务器端,部署大型模型也会带来高昂的计算成本和能源消耗。模型量化(ModelQuantization)作为一种关键的模型压缩和加速技术应运而生。其核心思想是将模型中的浮点数(通常是FP32或FP16)表示的权重和激活值转换为低精度整数(
- 百度快速收录2025最新科普
SEORoal
百度
跨境物流的智能突围战宁波某RCEP跨境物流平台接入214维特征矩阵后:✅'智能清关系统’72小时冲进TOP3✅'东盟电子报关’长尾词覆盖量暴涨4.2倍✅日均有效询盘突破300+技术三板斧:标题智能提取引擎(支持38种语义变异)动态阻抗参数混淆(误差≤0.15μΩ)实时工商特征同步(每2小时更新)2025生存指南:采用神经网络语义映射(NLP准确率98.2%)部署质量监控系统(误差率≤0.15%)加
- 百度快速收录2025秒收方法实战解析
SEO黑猫
百度
医疗门户网站48小时收录奇迹2023年底,某三甲医院官网改版后遭遇收录难题。通过我们部署的蜘蛛池智能调度系统,配合标题关键词矩阵布局(含’标题内提取’技术),成功实现48小时内全站收录。核心操作步骤:页面指纹构建采用动态TDK模板(例:『科室{科室}科室{病症}_${年份}最新诊疗方案』)植入地域长尾词(如’北京医保报销政策’)蜘蛛池配置方案#智能蜘蛛路由算法示例defschedule_spide
- 马斯克说的没错,DeepSeek确实厉害,但真正可怕的是...
PPT百科
人工智能powerpointpptDeepSeek马斯克
作者:PPT百科(PPTwiki.COM)发布日期:2025年2月25日“中国能做出DeepSeek这样的AI,我一点都不意外。”当马斯克在达沃斯论坛上说出这句话时,全球科技圈的目光再次聚焦到了这个中国AI独角兽身上。然而,这位“硅谷钢铁侠”的下一句话却耐人寻味:“但它还不是革命性的,我们的Grok3会更好。”马斯克的评价看似矛盾,实则揭示了AI竞争的核心逻辑——技术突破与市场落地的双重博弈。而D
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理