给孩子讲量子力学-第三讲-量子计算机和人类大脑

计算机里面有很多指令集,其中最简单的指令是加法,至于减法、乘法和除法,都可以通过加法来实现。有了加减乘除,就可以解方程、算微积分、画图、播放视频等。不管多复杂的计算机指令集,本质上都在做加法。

计算机采用二进制,半导体二极管可以在电路中充当开关,一长排的二极管可以表示一个很大的数字,而很多排的二极管可以表示很多数字。换句话说,二极管可以用来存储数据,这就是存储器。

更有意思的是,二极管不但能用来存储数据,还能用来进行数学计算。想象一条路上放着两扇门,如果两扇门都是关的,那这条路就不通,相当于0乘0等于0,一扇开一扇关,还是不通,相当于0乘1等于0,或者1乘0等于0。但如果两扇门都开了,这条路就通了,相当于1乘1等于1。因此,我们可以用二极管的开关状态实现乘法运算。如果在一个集成电路上集成很多个二极管,就可以用来对数据进行计算,这就是处理器。

计算机的两大核心——存储器和处理器,都是用半导体二极管做出来的。量子力学的一个最重要的应用就是制造二极管,如果没有量子力学,就不会有计算机了。

第一代计算机是电子管计算机,这种计算机又大又笨重,运算速度也慢,造价还特别贵。

第二代计算机叫晶体管计算机。

第三代计算机是用中小规模的集成电路做出来的。

第四代计算使用大规模和超大规模集成电路做出来的。

这些都是经典计算机,他们的工作原理满足经典力学。而量子计算机的工作原理满足量子力学。

经典计算机包括存储器和处理器两大部分,它们最基本的元器件都是二极管,二极管的主要功能就是开和关,一个经典的二极管,要么是100%的开,要么是100%的关,不会有第三种可能。

可是量子计算机不一样。前面的不确定性原理讲过,一个微观粒子可以即出现在一个地方,同时又出现在另一个地方。类似的,一个量子计算机中的元器件,也可以既处于开的状态,也处于关的状态。比如,它可能50%是开的,50%是关的;也可能30%是开的,70%是关的;还可能45.5%是开的,54.5%是关的。总之,最后加起来总共是100%。

这与我们的日常经验完全不符。不过在量子力学里,这就是世界的本来面目。

我们说“薛定谔的猫”处于50%的活着和50%死掉叠加的状态,这被称为量子力学的哥本哈根解释。

量子计算机的主要元件是一种奇特的开关,它可以同时处于开和关叠加的状态。但为什么有了这种开关,量子计算机就特别厉害呢?

量子计算机与经典计算机最核心的区别是,量子计算机基本元件构成的开关既可以是开的,同时也是关的。换句话说,它可以同时表示0和1这两个数字。这样的量子开关被称为量子比特。

一个经典开关,它能存储的数字只有0或1,存了一个就不能再存另一个。而一个量子开关,它有50%的几率存储0,还有50%的几率存储1,存了一个后还能再存另一个;换言之,一个量子开关就可以表示0和1这两个数字。

两个经典开关,一次还是只能表示一个数字;但如果是两个量子开关,一次就能表示00、01、10、11这四个数字。以此类推,随着开关数的增加,经典系统一次表示的数字依然是一个,但量子系统一次表示的数字将会以指数方式快速增加。当量子开关达到20个时候,它一次能表示的数字就会超过100万。这就是为什么量子计算机的计算能力会如此强大。

人类大脑有着我们目前所知的宇宙中最复杂的结构。目前的脑科学研究表明,人类大脑其实很像一台计算机,它也有存储器和处理器,其中存储器是帮助我们记忆的,而处理器是帮助我们思考的。人脑的最基本单元,也就是它的开关,是神经元。

神经元的中间像一个复杂的开关,外面的部分像很多根接出来的电线,几个神经元连在一起的样子,像一个小规模的集成电路。人脑中大概有860亿个神经元,像一个超大规模的集成电路。

神经元是可以放电的,大量神经元一起放电时就会向外辐射脑电波。

彭罗斯坚信人类大脑是一台量子计算机。

你可能感兴趣的:(给孩子讲量子力学-第三讲-量子计算机和人类大脑)