我们知道,一个典型的Map-Reduce过程包 括:Input->Map->Partition->Reduce->Output。
Partition负责把Map任务输出的中间结果 按key分发给不同的Reduce任务进行处理。
Hadoop 提供了一个很有用的partitioner类KeyFieldBasedPartitioner,通过配置对应的參数就能够使用。通过 KeyFieldBasedPartitioner能够方便地实现二次排序。
用法:
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
一般配合:
-D map.output.key.field.separator
-D num.key.fields.for.partition使用。
map.output.key.field.separator指定key内部的分隔符
num.key.fields.for.partition指定对key分出来的前几部分做partition而不是整个key
演示样例:
1. 编写map程序mapper.sh;reduce程序reducer.sh; 測试数据test.txt
mapper.sh:
#!/bin/sh cat
reducer.sh:
#!/bin/sh sort
test.txt内容:
1,2,1,1,1
1,2,2,1,1
1,3,1,1,1
1,3,2,1,1
1,3,3,1,1
1,2,3,1,1
1,3,1,1,1
1,3,2,1,1
1,3,3,1,1
2. 測试数据test.txt放入hdfs,执行map-reduce程序
$ hadoop streaming /
-D stream.map.output.field.separator=, /
-D stream.num.map.output.key.fields=4 /
-D map.output.key.field.separator=, /
-D num.key.fields.for.partition=2 /
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner /
-input /app/test/test.txt /
-output /app/test/test_result /
-mapper ./mapper.sh /
-reducer ./reducer.sh /
-file mapper.sh /
-file reducer.sh /
-jobconf mapre.job.name="sep_test"
$ hadoop fs –cat /app/test/test_result/part-00003
1,2,1,1 1
1,2,2,1 1
1,2,3,1 1
$ hadoop fs –cat /app/test/test_result/part-00004
1,3,1,1 1
1,3,1,1 1
1,3,2,1 1
1,3,2,1 1
1,3,3,1 1
1,3,3,1 1
通过这样的方式,就做到前4个字段是key,可是通过前两个字段进行partition的目的
注意:
-D map.output.key.field.separator=, /
这个分隔符使用TAB键貌似无论用
Hadoop Streaming 是一个工具, 取代编写Java的实现类,而利用可运行程序来完毕map-reduce过程
工作流程 :
InputFile --> mappers --> [Partitioner] --> reducers --> outputFiles
理解 :
1 输入文件,能够是指定远程文件系统内的目录下的 *
2 通过集群自己分解到各个PC上,每一个mapper是一个可运行文件,对应的启动一个进程,来实现你的逻辑
3 mapper 的输入为标准输入,所以,不论什么可以支持标准输入的可运行的东西,c,c++(编译出来的可运行文件),python,......都可以作 为mapper 和 reducer mapper的输出为标准输出,假设有Partitioner,就给它,假设没有,它的输出将作为reducer的输入
4 Partitioner 为可选的项,二次排序,能够对结果进行分类打到结果文件中面,它的输入是mapper的标准输出,它的输出,将作为reducer的标准输入
5 reducer 同 mapper
6 输出目录,在远端文件不能重名
Hadoop Streaming
1 : hadoop-streaming.jar 的位置 : $HADOOP_HOME/contrib/streaming 内
官方上面关于hadoop-streaming 的介绍已经非常具体了,并且也有了关于python的样例,我就不说了,这里总结下自己的经验
1 指定 mapper or reducer 的 task 官方上说要用 -jobconf 可是这个參数已经过时,不能够用了,官方说要用 -D, 注意这个-D是要作为最開始的配置出现的,由于是在maper 和 reducer 运行之前,就须要硬性指定好的,所以要出如今參数的最前面 ./bin/hadoop jar hadoop-0.19.2-streaming.jar -D .........-input ........ 类似这样,这样,即使你程序最后仅仅指定了一个输出管道,可是还是会有你指定的task数量的结果文件,仅仅只是多余的就是空的 实验下面 就知道了
2 关于二次排序,因为是用的streaming 所以,在可运行文件内,仅仅可以处理逻辑,还有就是输出,当然我们也可以指定二次排序,可是因为是所有參数化,不是非常灵活。比方:
10.2.3.40 1
11.22.33.33 1
www.renren.com 1
www.baidu.com 1
10.2.3.40 1
这样一个非常规整的输入文件,需求是要把记录独立的ip和url的count 可是输出文件要分切割出来。
官方站点的样例,是指定 key 然后对key 指定 主-key 和 key 用来排序,而 主-key 用来二次排序,这样会输出你想要的东西, 可是对于上面最简单的需求,对于传递參数,我们怎样做呢?
事实上我们还是能够利用这一点,在我们mapper 里面,还是依照/t来切割key value 可是我们要给key指定一个主-key 用来给Partitioner 来实现二次排序,所以我们能够略微处理下这个KEY,我们能够简单的推断出来ip 和 url 的差别,这样,我们就人为的加上一个主-key 我们在mapper里面,给每一个key人为的加上一个"标签",用来给partitioner做 二次排序用,比方我们的mapper的输出是这样
D&10.2.3.40 1
D&11.22.33.33 1
W&www.renren.com 1
W&www.baidu.com 1
D&10.2.3.40 1
然后通过传递命令參数
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner //指定要求二次排序
-jobconf map.output.key.field.separator='&' //这里假设不加两个单引號的话我的命令会死掉
-jobconf num.key.fields.for.partition=1 //这里指第一个 & 符号来切割,保证不会出错
这样我们就能够通过 partitioner 来实现二次排序了
在reducer里面,我们再把"标签"摘掉(不费吹灰之力)就能够做到悄无声息的完毕二次排序了。
3: 关于模块化
(强调 : 没有在集群上測试,仅仅在单机上做測试)
程序猿最悲剧的就是不能代码复用,做这个也一样,用hadoop-streaming 也一样,要做到代码重用,是我第一个考虑的问题
当我看到 -file(具体能够看官方站点上的解说) 的时候,我就想到利用这个东西,果然,我的在本机上建立了一个py模块,简单的一个函数
然后在我的mapper里面import 它,本地測试通过后,利用-file 把模块所在的问价夹用 -file moudle/* 这个參数,传入streaming
运行的结果毫无错误,这样,我们就能够抽象出来一些模块的东西,来实现我们模块化的需求
注 : 不要忘记 chmod +x *.py 将py 变成可运行的,不然不能够运行
代码 :
1: 模块代码 mg.py 用来给 mapper 贴标签
def
mgFunction(line):
if(line[0]
>=
'0'
and
line[0]
<=
'9'):
return
"D&"
+
line
return
"W&"
+
line
2: mapper.py
#!/usr/bin/env
python
import
sys
sys.path.append('/home/liuguoqing/Desktop/hadoop-0.19.2/moudle')
import
mg
for
line
in
sys.stdin:
line
=
mg.mgFunction(line)
line
=
line.strip()
#
print
line
words
=
line.split()
print
'%s\t%s'
%
(words[0],
words[1])
3: reducer.py
#!/usr/bin/env
python
import
sys
user_login_day
=
{}
for
line
in
sys.stdin:
line
=
line[2:]//去掉帽子
line
=
line.strip()
userid,
day
=
line.split('\t',
1)
user_login_day[userid]
=
user_login_day.get(userid,
0)
+
1
for
uid
in
user_login_day.keys():
print
'%s\t%d'
%
(uid,
user_login_day[uid])
这样就实现了模块化的能够二次排序的hadoop-streaming
命令
./bin/hadoop jar hadoop-0.19.2-streaming.jar \
#streaming jar
-D mapred.reduce.tasks=2 \
#指定2个reduce来处理
-input user_login_day-input2/* \
#指定输入文件 能够用 dir/* 方式
-output user_login_day-output102
#指定输出目录
-mapper ~/Desktop/hadoop-0.19.2/python/mapper/get_user_login_day_back.py \
#指定mapper 可运行文件 我用全路径,好像用相对路径会出错...
-reducer ~/Desktop/hadoop-0.19.2/python/reducer/get_user_login_day_back.py \
#指定reducer 可运行文件
-file ~/Desktop/hadoop-0.19.2/moudle/* \
#指定模块化的库文件 dir/* 模式
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \此处报错
-partitioner: command not found
#指定 partitioner 參数为class
-jobconf map.output.key.field.separator='&' \
#指定 主-key 的切割符号为 '&'
-jobconf num.key.fields.for.partition=1
#指定为第一个‘&’
liuguoqing@liuguoqing-desktop:~/Desktop/hadoop-0.19.2$ ./bin/hadoop jar hadoop-0.19.2-streaming.jar -D mapred.reduce.tasks=2 -input user_login_day-input2/* -output user_login_day-output102 -mapper ~/Desktop/hadoop-0.19.2/python/mapper/get_user_login_day_back.py -reducer ~/Desktop/hadoop-0.19.2/python/reducer/get_user_login_day_back.py -file ~/Desktop/hadoop-0.19.2/moudle/* -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner -jobconf map.output.key.field.separator='&' -jobconf num.key.fields.for.partition=1
10/01/24 03:19:15 WARN streaming.StreamJob: -jobconf option is deprecated, please use -D instead.
packageJobJar: [/home/liuguoqing/Desktop/hadoop-0.19.2/moudle/mg.py, /home/liuguoqing/Desktop/hadoop-0.19.2/moudle/mg.pyc, /tmp/hadoop-liuguoqing/hadoop-unjar6780057097425964518/] [] /tmp/streamjob3100401358387519950.jar tmpDir=null
10/01/24 03:19:15 INFO mapred.FileInputFormat: Total input paths to process : 2
10/01/24 03:19:15 INFO streaming.StreamJob: getLocalDirs(): [/tmp/hadoop-liuguoqing/mapred/local]
10/01/24 03:19:15 INFO streaming.StreamJob: Running job: job_201001221008_0065
10/01/24 03:19:15 INFO streaming.StreamJob: To kill this job, run:
10/01/24 03:19:15 INFO streaming.StreamJob: /home/liuguoqing/Desktop/hadoop-0.19.2/bin/../bin/hadoop job -Dmapred.job.tracker=hdfs://localhost:9881 -kill job_201001221008_0065
10/01/24 03:19:15 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201001221008_0065
10/01/24 03:19:16 INFO streaming.StreamJob: map 0% reduce 0%
10/01/24 03:19:17 INFO streaming.StreamJob: map 33% reduce 0%
10/01/24 03:19:18 INFO streaming.StreamJob: map 67% reduce 0%
10/01/24 03:19:19 INFO streaming.StreamJob: map 100% reduce 0%
10/01/24 03:19:27 INFO streaming.StreamJob: map 100% reduce 50%
10/01/24 03:19:32 INFO streaming.StreamJob: map 100% reduce 100%
10/01/24 03:19:32 INFO streaming.StreamJob: Job complete: job_201001221008_0065
10/01/24 03:19:32 INFO streaming.StreamJob: Output: user_login_day-output102
liuguoqing@liuguoqing-desktop:~/Desktop/hadoop-0.19.2$ ./bin/hadoop dfs -ls user_login_day-output102
Found 3 items
drwxr-xr-x - liuguoqing supergroup 0 2010-01-24 03:19 /user/liuguoqing/user_login_day-output102/_logs
-rw-r--r-- 1 liuguoqing supergroup 25 2010-01-24 03:19 /user/liuguoqing/user_login_day-output102/part-00000
-rw-r--r-- 1 liuguoqing supergroup 47 2010-01-24 03:19 /user/liuguoqing/user_login_day-output102/part-00001
liuguoqing@liuguoqing-desktop:~/Desktop/hadoop-0.19.2$ ./bin/hadoop dfs -cat user_login_day-output102/part-00000
54321 2
99999 1
12345 12
liuguoqing@liuguoqing-desktop:~/Desktop/hadoop-0.19.2$ ./bin/hadoop dfs -cat user_login_day-output102/part-00001
http://www.renren.com 3
http://www.baidu.com 3
以上为操作结果显示