- 人工智能 开源的大模型训练微调框架LLaMA-Factory
LLaMA-Factory是一个开源的大模型训练微调框架,具有模块化设计和多种高效的训练方法,能够满足不同用户的需求。用户可以通过命令行或Web界面进行操作,实现个性化的语言模型微调。LLaMA-Factory是一个专注于高效微调LLaMA系列模型的开源框架(GitHub项目地址:https://github.com/hiyouga/LLaMA-Factory)。它以极简配置、低资源消耗和对中文任
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- 循环神经网络(RNN):序列数据处理的强大工具
LNL13
rnn人工智能深度学习
在人工智能和机器学习的广阔领域中,处理和理解序列数据一直是一个重要且具有挑战性的任务。循环神经网络(RecurrentNeuralNetwork,RNN)作为一类专门设计用于处理序列数据的神经网络,在诸多领域展现出了强大的能力。从自然语言处理中的文本生成、机器翻译,到时间序列分析中的股票价格预测、天气预测等,RNN都发挥着关键作用。本文将深入探讨RNN的工作原理、架构特点、训练方法、常见类型以及其
- 如何训练一个 Reward Model:RLHF 的核心组件详解
茫茫人海一粒沙
深度学习人工智能强化学习
RewardModel(奖励模型)是RLHF的核心,决定了模型“觉得人类偏好什么”的依据。本文将系统介绍如何从零开始训练一个rewardmodel,包括数据准备、模型结构、损失函数、训练方法与注意事项。什么是RewardModel?RewardModel(RM)是一个评分器:它输入一个文本(通常是prompt+模型回答),输出一个实数分值(reward),表示这个回答的“人类偏好程度”。它不是分类
- 讯飞星火深度推理模型X1,为教育医疗带来革新
在科技飞速发展的今天,人工智能大模型已经成为推动各行业变革的重要力量。科大讯飞作为人工智能领域的佼佼者,其研发的星火深度推理模型X1,凭借独特的技术优势和强大的功能,为教育和医疗两大关乎国计民生的领域带来了前所未有的革新。技术原理与创新讯飞星火深度推理模型X1基于Transformer架构,并在此基础上进行了一系列创新。它通过大规模多阶段强化学习训练方法,在复杂推理、数学、代码、语言理解等场景全面
- 15.OCR训练
Echo``
Halcon系统化学习ocr人工智能深度学习算法计算机视觉机器学习
目录1.OCR训练2.助手训练13.助手训练24.算子训练5.OCR训练联合编程6.练习1.OCR训练*OCR训练*1.分类器文件*.omc*2.halcon官方的*1.局限性只能识别数字和字母*2.样式比较单一*3.样本数量较少*...**3.训练方法*1.助手训练*1.打开OCR助手*2.选择图片*3.选择训练区域*4.分割*5.字体*6.训练文件*7.新*8.学习*9.加入训练样本*10.保
- 100个AI大模型基础概念(收藏版)
程序员鑫港
人工智能大模型ai开发语言java大语言模型LLM
在人工智能技术快速发展的时代背景下,大模型作为核心驱动力,正深刻改变着各行业的发展模式与应用场景。从自然语言处理到计算机视觉,从智能对话系统到科学研究辅助,大模型展现出强大的通用性和适应性。本文将从基础概念、核心技术、数据处理、训练方法、评估体系、应用场景、伦理安全等多个维度,系统阐述100个AI大模型的关键基础知识,帮助读者全面理解这一前沿技术领域。前排提示,文末有大模型AGI-CSDN独家资料
- 好用的小而美的AI Agent
晋丑丑
人工智能机器学习pythonvisualstudiocode
一.2025年第一季度关键进展1月:OpenAI推出Operator2月:OpenAI推出DeepResearch3月:中国Manus爆火二.编码Agent:提升开发效率三.小而美Agent分类1.通用Agent2.垂直Agent3.计算机使用智能体CUA4.可交互的Agent四.构建AIAgent的平台量身定制AIAgent步骤五.技术细节:训练方法一.2025年第一季度关键进展1月:OpenA
- AI人工智能领域DALL·E 2的技术优化方向
AI大模型应用工坊
人工智能DALL·E2ai
AI人工智能领域DALL·E2的技术优化方向关键词:DALL·E2、文本到图像生成、扩散模型、计算效率、图像质量、多模态学习、模型压缩摘要:本文深入探讨了OpenAI的DALL·E2模型在人工智能领域的技术优化方向。我们将从模型架构、训练方法、计算效率、图像质量提升等多个维度进行分析,提出具体的优化策略和技术路线。文章不仅涵盖了理论基础,还提供了实际的代码实现和数学推导,帮助读者全面理解如何提升文
- 论文略读:Does Refusal Training in LLMs Generalize to the Past Tense?
UQI-LIUWJ
论文笔记人工智能
ICLR20251688拒绝训练被广泛用于防止大型语言模型(LLMs)生成有害、不良或非法的内容。我们揭示了当前拒绝训练方法中的一个奇特的泛化缺口:仅仅将一个有害请求改写为过去时(例如,将“HowtomakeaMolotovcocktail?”改为“HowdidpeoplemakeaMolotovcocktail?”)通常就足以破解许多最先进的LLM。我们在多个模型上系统地评估了这一方法,包括Ll
- Information Fusion期刊发表:Touch100k用语言解锁触觉感知新维度
xwz小王子
具身智能触觉感知与操作多模态变形金刚触觉数据集
触觉在提升机器人的感知与交互能力方面占据关键地位。当前触觉领域主要聚焦于视觉和触觉模态,而对语言模态的探索较为有限。北京交通大学计算机学院联合北京邮电大学人工智能学院方斌教授团队、腾讯微信AI团队发布了首个大规模触觉、多粒度语言、视觉三模态数据集Touch100k,并提出TLV-Link预训练方法,为材料属性识别和抓取预测任务提供了高效的触觉表示能力,特别是在零样本触觉理解方面取得显著进展,为触觉
- 【AI 人工智能】大型语言模型的实现技术原理与应用
七七Seven~
人工智能语言模型自然语言处理开发语言安全web安全智能手机
文章目录大型语言模型的实现技术原理与应用大模型发展历史1.大模型的起源2.代表性大模型3.大模型背后的关键技术4.大模型的影响5.展望未来技术原理及概念一、概述二、大型预训练语言模型的概念三、大型预训练语言模型的实现方式四、大型预训练语言模型的训练方法五、大型预训练语言模型的应用六、小结相关技术比较技术实现步骤与流程示例与应用准备工作核心模块实现集成与测试示例应用准备工作核心模块实现集成与测试优化
- 揭秘AI原生应用领域AI代理的模型训练方法
AI智能应用
Python入门实战AI大模型应用入门实战与进阶人工智能AI-nativeai
揭秘AI原生应用领域AI代理的模型训练方法关键词:AI原生应用、AI代理、模型训练方法、机器学习、深度学习摘要:本文聚焦于AI原生应用领域中AI代理的模型训练方法。首先介绍了相关背景知识,包括目的、预期读者等。接着详细解释了核心概念,如AI原生应用、AI代理等,并阐述了它们之间的关系。之后深入探讨了核心算法原理、数学模型和公式,还给出了项目实战案例,分析了实际应用场景。最后对未来发展趋势与挑战进行
- tesseract-ocr训练方法
weixin_34122604
pythonjava人工智能
2019独角兽企业重金招聘Python工程师标准>>>tesseract-ocr有2和3两个版本,不同版本训练方法稍有不同。第3版本的训练方法官版教程在这里:TrainingTesseract3第2版的训练方法官版教程在这里:TrainingTesseract我使用的是最新的3.01版本的。训练所需准备:1.下载并安装3.01版本的tesseract。事实上并不需要安装这步骤,我下载的是压缩包版,
- HALCON 深度学习训练 3D 图像的几种方式优缺点
LeonDL168
Halcon深度学习3d人工智能HALCON训练3D图像深度学习训练3D图像HALCONpython
HALCON深度学习训练3D图像的几种方式优缺点**在计算机视觉和工业检测等领域,3D图像数据的处理和分析变得越来越重要,HALCON作为一款强大的机器视觉软件,提供了多种深度学习训练3D图像的方式。每种方式都有其独特的设计思路和应用场景,了解它们的优缺点有助于根据具体需求选择最合适的训练方法。基于体素化的训练方式优点数据结构规整:体素化将3D图像转换为类似3D网格的数据结构,这种规整的数据形式能
- (LLaMa Factory)大模型训练方法--准备模型(Qwen2-0.5B)
风起晨曦
llama
1、准备训练框架LLaMAFactory是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过WebUI界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架。2、运行环境要求硬件:GPU:推荐使用24GB显存的显卡或者更高配置软件:python:3.10pytorch:2.1.2+cuda12.1操作系统:Ubuntu22.043、准备训练模型在开展大模型训练之前,由于
- 【仿生系统】qwen的仿生机器人解决方案
DFminer
机器人
收到完整需求后,我将从系统架构设计、算法实现路径、训练方法三个维度为您构建完整的仿生机器人解决方案。以下是分阶段实施方案:一、核心系统架构设计(模块化可进化架构)1.多模态感知引擎-视觉子系统:YOLOv8+SAM组合实现实时物体检测+场景语义分割-听觉子系统:Whisper+SpeakerEmbedding+情感识别三重处理-语言理解:基于LLaMA3的增量式语义解析(IncrementalPa
- 大语言模型(LLM)本身是无状态的,怎么固化记忆
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型人工智能自然语言处理机器学习概率论
大语言模型(LLM)本身是无状态的,无法直接“记住”历史对话或用户特定信息大语言模型(LLM)本身是无状态的,无法直接“记住”历史对话或用户特定信息,但可以通过架构改进、外部记忆整合、训练方法优化等方案实现上下文记忆能力。一、模型内部记忆增强:让LLM“记住”对话历史1.扩展上下文窗口(模型架构优化)技术原理:通过改进Transformer架构,增加模型可处理的上下文长度,直接将历史对话包含在输入
- 技术管理专题学习笔记-技术管理中的障碍和应对(2)
勇敢的星火
笔记技术管理
快速回顾:冲动的动机,技术经理的团队目标,和领导高质量沟通的思路,沉下心做事,赢得同事的尊重,在人员和事件相关事件中把握度(包容/精进),不好的上级特征;Q16:为什么新上任的经理容易冲动?A16:三类动机冲动动机一:想要维护个人面子情绪自控力的问题。我们要先保证自己的情绪不失控,再有理有据地反驳。做反驳也是有诀窍的,你的态度要好,但话要重。除了有理有据地反驳之外,还有一类技巧是你可以抓对方的逻辑
- 使用 PyTorch 实现 CBOW 词向量模型
进来有惊喜
python
在自然语言处理(NLP)领域,词向量表示是一项基础而关键的技术。通过将文本中的词语映射到低维向量空间,我们可以让计算机更好地理解和处理人类语言。今天,我们将深入探讨并实现CBOW(ContinuousBag-of-Words)模型,这是一种经典的词向量训练方法。什么是CBOW模型?CBOW模型是一种基于上下文预测目标词的神经网络模型,由Mikolov等人在2013年提出。与Skip-gram模型相
- 图像分割——U-Net论文介绍+代码(PyTorch)
yidaqiqi
人工智能python
0、概要原理大致介绍了一下,后续会不断精进改的更加详细,然后就是代码可以对自己的数据集进行一个训练,还会不断完善,相应其他代码可以私信我。一、论文内容总结摘要:人们普遍认为,深度网络成功需要数千样本,在本文中,提出一种网络和训练方法,它使用大量数据增强来有效使用现存的样本,我们的体系结构由一个捕获上下文的收缩路径和能够实现精确定位的对称扩展路径组成。我们证明出这个网络可以使用少量图像进行端到端训练
- 【AI论文】对抗性后期训练快速文本到音频生成
东临碣石82
人工智能
摘要:文本到音频系统虽然性能不断提高,但在推理时速度很慢,因此对于许多创意应用来说,它们的延迟是不切实际的。我们提出了对抗相对对比(ARC)后训练,这是第一个不基于蒸馏的扩散/流模型的对抗加速算法。虽然过去的对抗性后训练方法难以与昂贵的蒸馏方法进行比较,但ARC后训练是一个简单的程序,它(1)将最近的相对论对抗性公式扩展到扩散/流后训练,(2)将其与一种新的对比鉴别器目标相结合,以鼓励更好的提示依
- 人工智能模型DeepSeek-V3和DeepSeek-R1的区别
菩提树下的凡夫
人工智能
DeepSeek-V3和DeepSeek-R1是深度求索(DeepSeek)人工智能基础研究有限公司推出的两款人工智能模型,尽管它们都基于先进的深度学习技术、强化学习技术,但在设计目标、架构、训练方法、性能表现和应用场景上存在显著差异。以下是两者的详细对比:1.模型定位与核心能力DeepSeek-V3定位为通用型大语言模型,专注于自然语言处理(NLP)、知识问答、内容生成等任务。优势在于高效的多模
- DeepSeek-V3与DeepSeek-R1的对比
guanking
技术大模型DeepSeekDeepSeek-V3DeepSeek-R1
DeepSeek-R1和DeepSeek-V3是(DeepSeek)推出的两款大模型,在官网提供的服务中,默认采用V3回答用户的提问,点击“深度思考(R1)”,才启用R1推理回答。尽管DeepSeek-R1和DeepSeek-V3基于相似的技术框架(混合专家架构MoE),但在设计目标、训练方法、性能表现和应用场景上存在显著差异。DeepSeek-V3以低成本和高通用性见长,适合广泛的应用场景,暂时
- 探索大语言模型(LLM):查漏补缺,你真的完全了解大语言模型的术语吗?
艾醒(AiXing-w)
探索大语言模型(LLM)语言模型人工智能自然语言处理
前言在人工智能领域,大语言模型(LLM)已成为技术革新与应用落地的核心驱动力。从参数规模到训练技术,从基础架构到前沿研究方向,理解这些术语是掌握LLM技术的关键。本文将系统解析大语言模型的核心术语,涵盖模型规模、训练方法、优化技术、部署实践及前沿研究方向,为从业者构建完整的知识结构。一、模型规模与参数术语32B/72B中的"B""B"代表Billion(十亿),指模型参数量。例如:Qwen1.5-
- 拆书帮第14期训练营——作业三:如何实践刻意练习
LynnHarold
拆书帮成长之路
【主题】如何实践刻意练习片段来源:《刻意练习》拆书家:小玉【R:阅读原文】尽可能地进行刻意练习,是在任何一项事业的追求中变得更加杰出的基本路线图。如果在你所处的行业或领域之中,刻意练习可以实行,那么你应当采用刻意练习。如果不是,那你要尽最大的可能应用刻意练习的原则。在实践中,这往往归结为带有几个额外步骤的有目的的练习:首先辨别杰出人物,然后推测是什么使他们变得如此杰出,接着再提出训练方法,这些方法
- DeepSeek语言模型训练方法详解
暗涧幽火
语言模型人工智能自然语言处理
DeepSeek语言模型训练方法详解DeepSeek的模型是基于Transformer架构的大语言模型,类似GPT的结构。训练这样的模型通常需要大量的数据、分布式训练、强大的计算资源。如果是企业级训练,需要分布式训练和大量GPU;如果是个人使用,可以进行微调,或者使用云服务。要准备数据,比如数据清洗、预处理、分词等。同时,训练过程中的技巧,如学习率调整、正则化、防止过拟合的方法。比如用PyTorc
- 机器学习实操 第一部分 机器学习基础 第5章 支持向量机(SVM)
odoo中国
人工智能机器学习支持向量机人工智能
机器学习实操第一部分机器学习基础第5章支持向量机(SVM)内容概要第5章深入介绍了支持向量机(SVM),这是一种功能强大且应用广泛的机器学习模型。SVM适用于线性或非线性分类、回归以及noveltydetection。本章详细讲解了SVM的核心概念、训练方法以及在不同任务中的应用。通过理论和实践相结合的方式,读者将掌握如何使用SVM解决实际问题。主要内容线性SVM分类硬间隔分类:在数据线性可分的情
- 小米开源Xiaomi-MiMo-7B 详情
Panesle
前沿人工智能大模型文本生成
Xiaomi-MiMo开源详情一、引言这篇技术报告介绍了小米推出的MiMo-7B系列模型。目前多数成功的强化学习(RL)工作,尤其是提升代码推理能力的研究,都依赖于大型基础模型(如32B模型)。通常认为,小型模型难以同时在数学和代码推理能力上取得均衡提升。但报告作者认为,强化学习训练的推理模型效果取决于基础模型的推理潜力。为充分挖掘语言模型的推理潜力,既要关注后训练策略,也要优化预训练方法。MiM
- 卷积神经网络(CNN)详细教程
AI糊涂是福
人工智能cnn人工智能神经网络
卷积神经网络(CNN)详细教程一、引言卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。CNN通过模拟人类视觉系统的层次结构,能够自动提取图像中的特征,从而实现高效的分类和识别任务。本文将详细介绍CNN的基本原理、架构设计、训练方法以及实际应用案例。二、卷积神经网络的基本原理(一)卷积层(Convol
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在