R语言求解混合线性方程组(有系谱)

王金玉, 陈国宏. 数量遗传与动物育种[M]. 东南大学出版社, 2004.
第十六章: BLUP育种值估计

用矩阵混合线性方程组计算:方差组分已知

数据

R语言求解混合线性方程组(有系谱)_第1张图片
dat

Y = Xb + Za + e

> dat <- data.frame(id=c(4,5,6),sire = c(1,3,3),dam=c(2,2,4),y=c(200,170,180))
> dat
  id sire dam   y
1  4    1   2 200
2  5    3   2 170
3  6    3   4 180
> for( i in 1:3) dat[,i] <- as.factor(dat[,i])
> str(dat)
'data.frame':   3 obs. of  4 variables:
 $ id  : Factor w/ 3 levels "4","5","6": 1 2 3
 $ sire: Factor w/ 2 levels "1","3": 1 2 2
 $ dam : Factor w/ 2 levels "2","4": 1 1 2
 $ y   : num  200 170 180
> dat
  id sire dam   y
1  4    1   2 200
2  5    3   2 170
3  6    3   4 180

A-1

> Ainv <- makeAinv(pped)$Ainv;Ainv
6 x 6 sparse Matrix of class "dgCMatrix"
                           
1  1.5  .    0.5 -1.0  .  .
3  .    2.0  0.5  0.5 -1 -1
2  0.5  0.5  2.0 -1.0 -1  .
4 -1.0  0.5 -1.0  2.5  . -1
5  .   -1.0 -1.0  .    2  .
6  .   -1.0  .   -1.0  .  2
R语言求解混合线性方程组(有系谱)_第2张图片
> cbind(XpX,XpZ)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,]    3    0    0    0    1    1    1
> cbind(ZpX,ZpZ+Ainv*alpha)
6 x 7 sparse Matrix of class "dgCMatrix"
                     
1 .  3  .  1 -2  .  .
3 .  .  4  1  1 -2 -2
2 .  1  1  4 -2 -2  .
4 1 -2  1 -2  6  . -2
5 1  . -2 -2  .  5  .
6 1  . -2  . -2  .  5

混合线性方程组:LHS

> LHS=rbind(cbind(XpX,XpZ),cbind(ZpX,ZpZ+Ainv*alpha)) #LHS
> LHS
7 x 7 sparse Matrix of class "dgCMatrix"
                     
  3  .  .  .  1  1  1
1 .  3  .  1 -2  .  .
3 .  .  4  1  1 -2 -2
2 .  1  1  4 -2 -2  .
4 1 -2  1 -2  6  . -2
5 1  . -2 -2  .  5  .
6 1  . -2  . -2  .  5

混合线性方程组:RHS

R语言求解混合线性方程组(有系谱)_第3张图片
RHS
> RHS=rbind(Xpy,Zpy) #RHS
> RHS
     [,1]
[1,]  550
[2,]    0
[3,]    0
[4,]    0
[5,]  200
[6,]  170
[7,]  180

求解方差

> sol=solve(LHS)%*%RHS #
> sol
7 x 1 Matrix of class "dgeMatrix"
            [,1]
[1,] 183.1993935
[2,]   2.7445034
[3,]  -3.1235785
[4,]   0.3790751
[5,]   4.3062926
[6,]  -3.7376801
[7,]  -0.1667930

用asreml计算BLUP值,方差组分定义

计算逆矩阵

ainv <- asreml.Ainverse(dat[,1:3])$ginv

定义方差组分,为固定的值

Va <- (1/2)*Ve;names(Va) <- c("F")
Ve <- 6666.67;names(Ve) <- c("F")

拟合模型

mode <- asreml(y ~ 1, random=~ ped(id,init=Va),
               family=asreml.gaussian(dispersion = Ve), 
               ginverse =list(id=ainv),data=dat)

结果查看

> summary(mode)$varcomp
               gamma component std.error z.ratio constraint
ped(id)!ped 3333.335  3333.335        NA      NA      Fixed
R!variance  6666.670  6666.670        NA      NA      Fixed
> coef(mode)$random
              effect
ped(id)_1  2.7445034
ped(id)_3 -3.1235785
ped(id)_2  0.3790751
ped(id)_4  4.3062926
ped(id)_5 -3.7376801
ped(id)_6 -0.1667930
> summary(mode,all=T)$coef.random
            solution std error      z ratio
ped(id)_1  2.7445034  56.40660  0.048655711
ped(id)_3 -3.1235785  55.86638 -0.055911592
ped(id)_2  0.3790751  57.25153  0.006621222
ped(id)_4  4.3062926  54.53877  0.078958379
ped(id)_5 -3.7376801  54.26003 -0.068884590
ped(id)_6 -0.1667930  55.18367 -0.003022507

注意,这里blup值的标准误,它的计算方法是Ve*diag(solve(LHS))计算出来的。

所有R语言的代码

# data

y=c(110,100,110,100,100,110,110,100,100)
Herd <- c(1,1,2,2,2,3,3,3,3)
Sire <- c("ZA","AD","BB","AD","AD","CC","CC","AD","AD")
dat <- data.frame(Herd,Sire,y)
dat
X = matrix(c(1,1,0,0,0,0,0,0,0,
             0,0,1,1,1,0,0,0,0,
             0,0,0,0,0,1,1,1,1),9, byrow=F)
X
Z = matrix(c(1,0,0,0,0,0,0,0,0,
             0,0,1,0,0,0,0,0,0,
             0,0,0,0,0,1,1,0,0,
             0,1,0,1,1,0,0,1,1),9, byrow=F)
Z  
I1=diag(4)
I2=diag(9)
# 方差组分固定值
se=1
su=0.1
G=I1*su
R=I2*se

V = Z%*%G%*%t(Z) + R
V

Vinv <- solve(V)

blue <- solve(t(X)%*%Vinv%*%X)%*%t(X)%*%Vinv%*%y
blue

blup <- G%*%t(Z)%*%Vinv%*%(y - X%*%blue)
blup

# 用混合线性方程组
alpha <- se/su
XpX=crossprod(X) #X’X
XpZ=crossprod(X,Z) #X’Z
ZpX=crossprod(Z,X) #Z’X
ZpZ=crossprod(Z) #Z’Z
Xpy=crossprod(X,y) #X’y
Zpy=crossprod(Z,y) #Z'y
LHS=rbind(cbind(XpX,XpZ),cbind(ZpX,ZpZ+diag(4)*alpha)) #LHS
LHS
RHS=rbind(Xpy,Zpy) #RHS
RHS
sol=solve(LHS)%*%RHS #
sol

# 用asreml进行处理

Ve = 0.1; Va = 1
names(Ve) <- c("F")
names(Va) <- c("F")
dat$Herd <- as.factor(dat$Herd)
mod <- asreml(y ~ Herd-1,random = ~ Sire,data=dat)
model <- asreml(y ~ Herd-1, random = ~ id(Sire,init=Va), 
                family=asreml.gaussian(dispersion = Ve), data=dat)
model <- update(model)
coef(model)
summary(model)$varcomp
dat
write.csv(dat,"d:/dat.csv")



# have pedigree information
dat <- data.frame(id=c(4,5,6),sire = c(1,3,3),dam=c(2,2,4),y=c(200,170,180))
dat
for( i in 1:3) dat[,i] <- as.factor(dat[,i])
str(dat)
dat
ped <- dat[,1:3]
library(nadiv)
pped <- prepPed(ped)
pped
makeA(pped)
Ainv <- makeAinv(pped)$Ainv;Ainv
library(asreml)
library(Matrix)
y <- matrix(c(200,170,180),3,1)
X <- matrix(c(1,1,1),3,1);X
Z <- matrix(c(0,0,0,1,0,0,
              0,0,0,0,1,0,
              0,0,0,0,0,1),byrow = T,3,6);Z


alpha = 2
XpX <- crossprod(X);XpX
XpZ <- crossprod(X,Z);XpZ
ZpX <- crossprod(Z,X);ZpX
ZpZ <- crossprod(Z);ZpZ

Xpy <- crossprod(X,y);Xpy
Zpy <- crossprod(Z,y);Zpy
cbind(XpX,XpZ)
cbind(ZpX,ZpZ+Ainv*alpha)
LHS=rbind(cbind(XpX,XpZ),cbind(ZpX,ZpZ+Ainv*alpha)) #LHS
LHS
RHS=rbind(Xpy,Zpy) #RHS
RHS

# result
sol=solve(LHS)%*%RHS #
sol





ainv <- asreml.Ainverse(dat[,1:3])$ginv
ainv
Va <- (1/2)*Ve;names(Va) <- c("F")
Ve <- 6666.67;names(Ve) <- c("F")
mode <- asreml(y ~ 1, random=~ ped(id,init=Va),
               family=asreml.gaussian(dispersion = Ve), 
               ginverse =list(id=ainv),data=dat)

summary(mode)$varcomp
coef(mode)$random
summary(mode,all=T)$coef.random

你可能感兴趣的:(R语言求解混合线性方程组(有系谱))