- 算法分析与设计实验2:实现克鲁斯卡尔算法和prim算法
表白墙上别挂我
算法笔记经验分享
实验原理(一)克鲁斯卡尔算法:一种用于求解最小生成树问题的贪心算法,该算法的基本思想是按照边的权重从小到大排序,然后依次选择边,并加入生成树中,同时确保不会形成环路,直到生成树包含图中所有的顶点为止。具体步骤:边的排序:将所有边按照权重从小到大排序。初始化:创建一个空的生成树(可以是一个空的图结构),以及一个用于记录每个顶点所属集合(或称为连通分量)的数据结构(例如并查集)。边的选择:依次选择排序
- vllm推理实践
try2find
java前端服务器
1.vllm推理demo实验fromvllmimportLLM,SamplingParams#定义生成参数sampling_params=SamplingParams(temperature=0.7,top_p=0.9,max_tokens=100,)#加载DeepSeek模型(以deepseek-llm-7b为例)#model_name="deepseek-ai/deepseek-llm-7b"
- Transformer模型压缩:结构化剪枝与混合精度量化研究
pk_xz123456
仿真模型机器学习深度学习transformer剪枝深度学习
Transformer模型压缩:结构化剪枝与混合精度量化研究摘要本文针对Transformer模型在实际部署中面临的计算资源消耗大、内存占用高和推理延迟等问题,提出了一种结合结构化剪枝与混合精度量化的综合压缩方案。我们首先分析了Transformer模型的结构特点及其在计算效率方面的瓶颈,然后系统地研究了结构化剪枝和混合精度量化的理论基础与实现方法。通过实验验证,我们的方法在保持模型性能的同时显著
- SVN本地拉取项目
小鱼爱小于
SVNsvn
1.在需要拉去的盘创建一个新的文件夹,然后右键选择Checkout.2.上面是需要拉取代码的地址。选择OK等待一会就可以拉取成功了
- jdk17+springboot3项目加密部署
最近项目需要在第三方服务器部署,由于没有交付源码。所以需要将项目加密后再部署。网上找了一圈,发现xjar这个开源项目,可以将代码加密后进行部署。看了下正是我需要的。于是按照文档打包加密,但启动的时候居然报错。这个结果结果有点难受!xjar不支持springboot3.!翻了翻issue,看到有个老哥新拉的分支支持springboot3。于是clone新分支代码。继续打包,加密,启动。这下就成功启动
- 【NWFSP问题】基于中华穿山甲算法CPO求解零等待流水车间调度问题NWFSP研究(Matlab代码实现)
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述1.引言2.理论基础2.1中华穿山甲算法(CPO)核心原理2.2NWFSP数学模型3.CPO-NWFSP求解框架设计3.1编码与解码3.2离散化位置更新3.3目标函数适配4.实验设计与性能分析4.1实验设置4.2结果分析4.3敏感性分析5.结论与展望
- 数据结构之栈实验
lannnn_
学习记录数据结构c语言栈
栈实验实验目的实验环境实验要求实验内容源代码运行结果实验目的掌握栈这种数据结构特性及其主要存储结构,并能在现实生活中灵活运用。实验环境CodeBlocks实验要求1.熟悉c语言的语法知识;2.掌握栈的顺序存储结构—顺序栈的定义、构造、获得栈顶元素、入栈、出栈等基本操作;实验内容完成栈的定义、构造、获得栈顶元素、进栈、出栈等函数的编写。要求在主函数中实现对以上操作的调用,编写一个算法判断给定的字符向
- Gemini CLI 工具注册系统深度解析:从动态发现到智能执行的完整架构
前言在探索了GeminiCLI的配置系统、扩展机制和构建流程后,今天我们将深入项目的核心——工具注册系统。这个系统位于tools目录,是整个AI工具生态的神经中枢。通过对tool-registry.ts和tools.ts的深入分析,我们可以看到一个插件化工具架构¹的完整实现。注解1-插件化工具架构:不同于传统的硬编码工具集合,GeminiCLI采用了完全插件化的工具架构。系统能够动态发现、注册和执
- 大模型训练与微调(1)——优化器选择总结
John_今天务必休息一天
人工智能机器学习深度学习
大模型训练与微调(1)——优化器选择总结一、AdamW优化器:成熟稳定的主流选择二、Lion优化器:谷歌提出的高效替代方案三、其他优化器的补充应用四、优化器选择趋势与实验对比五、未来发展方向当前最新的大模型在优化器的选择上,主要结合了传统优化器的稳定性与新型优化器的效率优势。以下是主流大模型采用的优化器及其技术特点的总结:一、AdamW优化器:成熟稳定的主流选择核心原理与改进AdamW是Adam的
- AI智能体原理及实践:从概念到落地的全链路解析
you的日常
人工智能大语言模型人工智能机器学习深度学习神经网络自然语言处理
AI智能体正从实验室走向现实世界,成为连接人类与数字世界的桥梁。它代表了人工智能技术从"知"到"行"的质变,是能自主感知环境、制定决策、执行任务并持续学习的软件系统。在2025年,AI智能体已渗透到智能家居、企业服务、医疗健康、教育和内容创作等领域,展现出强大的生产力与创造力。然而,其发展也伴随着技术挑战、伦理困境和安全风险,需要从架构设计到落地应用的全链条思考与平衡。一、AI智能体的核心定义与技
- 机器学习20-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习20-线性网络思考针对线性网络的基础问题,使用基础示例进行解释1-核心知识点1-线性模型家族的线性回归和逻辑回归分别是什么,线性模型家族还有没有其他的模型线性模型家族是一系列基于线性假设的统计模型,它们假设因变量和自变量之间存在线性关系。线性模型家族中的两个最常见模型是线性回归和逻辑回归。线性回归(LinearRegression):线性回归是一种用于预测连续因变量的模型。它假设因变量yy
- 机器学习19-Transformer和AlexNet思考
坐吃山猪
机器学习机器学习transformer人工智能
Transformer和AlexNet思考关于Transformer和AlexNet发展的一些思考1-核心知识点Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?AlexNet的主要核心思路是什么,为什么表现那么好?现在有什么比AlexNet更优秀的算法2-思路整理1-Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?Word2Vec的作用Word2
- 机器学习21-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习21-线性网络思考针对线性网络的发展问题,进行补充学习1-核心知识点1-传统机器学习针对线性分类算法求解的方式有哪些?请详细列举不同的算法对应的损失函数和计算思路在传统机器学习中,线性分类算法是一种非常重要的方法,用于将数据划分为不同的类别。以下是几种常见的线性分类算法,包括它们的损失函数和计算思路:1.感知机(Perceptron)损失函数感知机的损失函数是基于误分类点的,其目标是最小化
- 实验五-Flask的简易登录系统
亚力山大抵
pythonflaskpython后端
一、实验目的和任务1.掌握Flask框架的基本使用方法2.理解Web应用的会话管理机制3.实现用户认证系统的基本功能4.学习模板继承和表单处理技术要求:请将思考题的答案写在实验报告中二、实验内容1.基础环境搭建:创建项目目录结构、安装必要依赖包2.核心功能实现:用户注册(用户名、密码)、用户登录验证、会话状态管理、用户退出功能3.前端界面开发:基础模板设计、注册/登录表单实现4.系统测试验证:注册
- 一文学会 ts 构建工具 —— tsup
文章目录能打包什么?安装用法自定义配置文件条件配置在package.json中配置多入口打包生成类型声明文件sourcemap生成格式自定义输出文件代码分割产物目标环境支持es5编译的环境变量对开发命令行工具友好监听模式watch提供成功构建的钩子onSuccess压缩产物minify自定义loaderTreeshaking类型检查支持CSS(实验性功能)元数据文件metafile自定义esbui
- docker拉取镜像报错:error pulling : download failed after attempts=6: dial tcp 69.162.134.178:443: i/o time
m0_47460678
dockerdocker容器运维
1.cd/etc找到resolv.conf命令:viresolv.conf添加内容:nameserver8.8.8.8nameserver8.8.4.4nameserver1.1.1.1保存并退出:wq2.cd/etc/docker找到daemon.json文件,没有则新建一个命令:vidaemon.json添加内容:{"dns":["8.8.8.8","8.8.4.4","1.1.1.1"],"
- 版本迭代与App Store上架
ZeroOnet
经验教训App-store上架被拒理由版本迭代教程
前言自从Xcode8引入了Automaticmanagesigning,广大iOSDeveloper终于松了很多口气了。(幸运的我是在这之后才有上架的经历,嘿嘿!)现在的上架也就不再那么多坑点了,很多步骤都是水到渠成。这篇博客就分享一些我在这过程中的经验,同时也会粗略演示上架的过程和注意事项,最有价值的是两个被拒的原因,一定不要错过哟!版本迭代之前实验室里做过的一个关于智能停车的项目——停如意,需
- Appium自动化——day1
一个做测试的摄影师Appium简介什么是appium?Appium可以测试的app类型使用Appium的被测APP运行平台测试对象App运行环境:测试程序语言:测试程序运行平台:Appium自动化原理Appium架构图手机端驱动程序介绍安卓底层自动化架构自动化环境搭建环境安装-win/androidAppium相关环境安装1.安装1-客户端.2.安装2-服务端3.安装3-电脑端环境4.安装4-电脑
- 2025年6月AIGC发展全景:技术轻量化、Agent产业化与伦理新挑战
Loving_enjoy
计算机学科论文创新点深度学习人工智能经验分享facebook
>**当一块消费级GPU能解高考数学题,当AI智能体接管医院诊断流程,我们正站在人机协作新纪元的门槛上**2025年6月,AIGC领域迎来关键转折点——**模型轻量化**让百亿参数算法飞入寻常设备,**多模态融合**打破文本与视觉的次元壁,而**Agent智能体**正从实验室概念蜕变为产业核心引擎。这场变革不仅重塑技术范式,更在重构商业逻辑与人类创造力边界。---###一、技术突破:垂直化、轻量化
- 企业数据资产运营平台建设实践
罗伯特之技术屋
大数据与数字化的设计应用专栏大数据
摘要数据是企业的核心战略资产,这已然成为社会共识。在数字化转型浪潮下,各企业通过数据资源化推动业务数据化,以数据资产化推动数据业务化,最终充分释放数据资产价值。研究了从数据的业务供给端出发,如何通过数据资产运营构建全面有效、切合实际的数据资产管理体系,从而提升数据质量,保障数据安全;从业务的数据需求端出发,如何通过数据资产运营拉通企业内部和外部数据,推动数据与业务深度融合,丰富数据资产应用场景。数
- 深度学习实验:GPU加速,突破性能瓶颈
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习实验:GPU加速,突破性能瓶颈1.背景介绍随着深度学习模型变得越来越复杂和庞大,传统的CPU已经无法满足训练和推理的计算需求。GPU凭借其强大的并行计算能力和专门为矩阵运算优化的架构,成为了深度学习领域的核心加速器。本文将探讨如何利用GPU加速深度学习实验,突破性能瓶颈,提高模型训练和推理的效率。2.核心概念与联系2.1GPU架构GPU(图形处理器)最初是为了加速图形渲染而设计的,但由于其
- 使用大模型预测胃穿孔的全流程系统技术方案大纲
目录一、项目概述二、项目背景三、建设目标四、建设内容(一)建设架构(二)核心功能(三)核心技术(四)预期成效(五)方案总结五、系统架构方案流程图六、实验验证证据七、健康教育与指导一、项目概述本项目旨在构建一套基于大模型的胃穿孔预测及全流程管理系统,通过整合术前、术中、术后各环节数据,利用先进的人工智能技术,实现对胃穿孔疾病的精准预测、手术方案优化、并发症风险预警以及术后护理指导等功能,为医疗决策提
- LK32T102学习2-GPIO
GPIO即可编程输入输出口,LK32T102有3组GPIO口,每组最多32条口线。GPIO口线可以实现很多的功能,可以说掌握了GPIO功能也就MCU编程也就基本实现了MCU的入门。GPIO功能使用要注意LTK320T的管脚是多功能的,可作为数字量管脚,也可以作为模拟量管脚。输入模式浮空输入模式输入完全由外部输入决定PU,PD都不导通上拉输入模式IO悬空时输入为高电平PU导通,PD不导通下拉输入模式
- Xtuner:大模型微调快速上手
潘达斯奈基~
AIGCAIGC
一、XTuner是什么?简单来说,XTuner是一个轻量级、易于使用的、为大语言模型(LLM)设计的微调工具库。它由上海人工智能实验室(OpenMMLab)开发,是其强大AI工具生态(MMCV,MMEngine等)的一部分。它的核心设计理念是“用一个配置文件搞定一切”,让开发者和研究人员可以极大地简化微调流程。二、为什么选择XTuner?(核心优势)轻量且用户友好:命令行驱动:你不需要编写复杂的训
- docker-compose编排saleor
obboda
运维docker容器运维
一、saleor简介Saleor是一个开源Headless电商系统Saleor,它被用于电子商务等场景。Saleor是现代堆栈上以客户为中心的电子商务。是一个无头的GraphQL商务平台,提供超快速、动态、个性化的购物体验。美观的在线商店,任何地方,任何设备。二、saleor的默认启动流程1、拉取存储库gitclonehttps://github.com/saleor/saleor-platfor
- 计算机专业毕业答辩注意事项
李子圆圆
计算机网络java计算机人工智能
毕业答辩是计算机专业学习过程中的重要环节,它不仅是对学生多年学习成果的综合检验,也是展示个人专业能力和学术素养的重要机会。为了帮助同学们在答辩中取得优异成绩,顺利迈出校园,走向职场或更高的学术殿堂,以下为大家详细介绍计算机专业毕业答辩的注意事项。一、前期准备(一)论文内容把控熟悉论文细节:对自己撰写的毕业论文要了如指掌,从研究背景、目的、意义,到具体的研究方法、技术实现细节、实验过程及结果分析,每
- 《ARM64 架构迁移实战:在银河麒麟系统部署全栈环境及容器化应用》副标题: 从 MySQL 到 Docker+Nginx 的完整迁移适配指南
2301_82150492
架构mysqldocker
文章目录(带锚点跳转)环境准备:ARM64+KylinOS特性解析基础组件迁移安装2.1JDK(ARM优化版)2.2MySQL8.0(解决依赖冲突)2.3Redis6(源码编译优化)容器化迁移:Docker部署与镜像适配3.1Docker离线安装(适配麒麟内核)3.2拉取ARM版Nginx镜像3.3容器生命周期管理(启动/监控/删除)数据迁移实战:MySQL到Redis同步策略开发工具迁移:文档转
- 初试牛刀 - 使用 Chaos Mesh 进行第一次混沌实验
weixin_42587823
混沌混沌工程
初试牛刀-使用ChaosMesh进行第一次混沌实验第一步:准备实验环境我们的“混沌实验室”需要三个核心组件:一个Kubernetes集群、ChaosMesh平台、以及一个用来做实验的应用。A.安装ChaosMesh我们将使用Helm来安装ChaosMesh,这是官方推荐的最简单的方式。添加ChaosMesh的Helm仓库:helmrepoaddchaos-meshhttps://charts.ch
- 【V15.0 - 交互篇】从“卡顿”到“丝滑”:我用Streamlit三个高级技巧,把AI应用的体验拉满了
在上一篇《告别黑框框:我用Streamlit,3小时给AI穿上了“钢铁侠战衣”》中,我们体验了Streamlit的黑魔法,成功地将我们强大的AI内核,从冰冷的命令行,封装成了一个有血有肉的Web应用。它能看,能用,看起来已经很酷了。但当我把这个应用的早期版本发给朋友试用时,我收到了三个尖锐的反馈:‘我只是想拖动一下滑块,为什么整个页面都要重新加载一遍,烦死了!’‘你的报告太长了,我只想看结论,能不
- Docker三分钟部署ElasticSearch平替MeiliSearch轻量级搜索引擎
个人主页:阿木木AEcru(更多精彩内容可进入主页观看)系列专栏:《Docker容器化部署系列》《Java每日面筋》每一次技术突破,都是对自我能力的挑战和超越。目录一、什么是MeiliSearch?二、对比ElasticSearch有什么好处?三、使用场景有哪些?四、docker部署MeiliSearch4.1创建数据持久化文件夹4.2拉取镜像4.3运行容器五、访问测试5.1访问5.2下载测试文
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那