H.264 视频 RTP 负载格式
1. 网络抽象层单元类型 (NALU)
NALU 头由一个字节组成, 它的语法如下:
+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|F|NRI| Type |
+---------------+
F: 1 个比特.
forbidden_zero_bit. 在 H.264 规范中规定了这一位必须为 0.
NRI: 2 个比特.
nal_ref_idc. 取 00 ~ 11, 似乎指示这个 NALU 的重要性, 如 00 的 NALU 解码器可以丢弃它而不影响图像的回放. 不过一般情况下不太关心
这个属性.
Type: 5 个比特.
nal_unit_type. 这个 NALU 单元的类型. 简述如下:
0 没有定义
1-23 NAL单元 单个 NAL 单元包.
24 STAP-A 单一时间的组合包
25 STAP-B 单一时间的组合包
26 MTAP16 多个时间的组合包
27 MTAP24 多个时间的组合包
28 FU-A 分片的单元
29 FU-B 分片的单元
30-31 没有定义
2. 打包模式
下面是 RFC 3550 中规定的 RTP 头的结构.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| synchronization source (SSRC) identifier |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
| contributing source (CSRC) identifiers |
| .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
负载类型 Payload type (PT): 7 bits
序列号 Sequence number (SN): 16 bits
时间戳 Timestamp: 32 bits
H.264 Payload 格式定义了三种不同的基本的负载(Payload)结构. 接收端可能通过 RTP Payload
的第一个字节来识别它们. 这一个字节类似 NALU 头的格式, 而这个头结构的 NAL 单元类型字段
则指出了代表的是哪一种结构,
这个字节的结构如下, 可以看出它和 H.264 的 NALU 头结构是一样的.
+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|F|NRI| Type |
+---------------+
字段 Type: 这个 RTP payload 中 NAL 单元的类型. 这个字段和 H.264 中类型字段的区别是, 当 type
的值为 24 ~ 31 表示这是一个特别格式的 NAL 单元, 而 H.264 中, 只取 1~23 是有效的值.
24 STAP-A 单一时间的组合包
25 STAP-B 单一时间的组合包
26 MTAP16 多个时间的组合包
27 MTAP24 多个时间的组合包
28 FU-A 分片的单元
29 FU-B 分片的单元
30-31 没有定义
可能的结构类型分别有:
1. 单一 NAL 单元模式
即一个 RTP 包仅由一个完整的 NALU 组成. 这种情况下 RTP NAL 头类型字段和原始的 H.264的
NALU 头类型字段是一样的.
2. 组合封包模式
即可能是由多个 NAL 单元组成一个 RTP 包. 分别有4种组合方式: STAP-A, STAP-B, MTAP16, MTAP24.
那么这里的类型值分别是 24, 25, 26 以及 27.
3. 分片封包模式
用于把一个 NALU 单元封装成多个 RTP 包. 存在两种类型 FU-A 和 FU-B. 类型值分别是 28 和 29.
2.1 单一 NAL 单元模式
对于 NALU 的长度小于 MTU 大小的包, 一般采用单一 NAL 单元模式.
对于一个原始的 H.264 NALU 单元常由 [Start Code] [NALU Header] [NALU Payload] 三部分组成, 其中 Start Code 用于标示这是一个
NALU 单元的开始, 必须是 "00 00 00 01" 或 "00 00 01", NALU 头仅一个字节, 其后都是 NALU 单元内容.
打包时去除 "00 00 01" 或 "00 00 00 01" 的开始码, 把其他数据封包的 RTP 包即可.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|F|NRI| type | |
+-+-+-+-+-+-+-+-+ |
| |
| Bytes 2..n of a Single NAL unit |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
如有一个 H.264 的 NALU 是这样的:
[00 00 00 01 67 42 A0 1E 23 56 0E 2F ... ]
这是一个序列参数集 NAL 单元. [00 00 00 01] 是四个字节的开始码, 67 是 NALU 头, 42 开始的数据是 NALU 内容.
封装成 RTP 包将如下:
[ RTP Header ] [ 67 42 A0 1E 23 56 0E 2F ]
即只要去掉 4 个字节的开始码就可以了.
2.2 组合封包模式
其次, 当 NALU 的长度特别小时, 可以把几个 NALU 单元封在一个 RTP 包中.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RTP Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAP-A NAL HDR | NALU 1 Size | NALU 1 HDR |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NALU 1 Data |
: :
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | NALU 2 Size | NALU 2 HDR |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NALU 2 Data |
: :
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2.3 Fragmentation Units (FUs).
而当 NALU 的长度超过 MTU 时, 就必须对 NALU 单元进行分片封包. 也称为 Fragmentation Units (FUs).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| FU indicator | FU header | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| FU payload |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14. RTP payload format for FU-A
The FU indicator octet has the following format:
+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|F|NRI| Type |
+---------------+
The FU header has the following format:
+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
|S|E|R| Type |
+---------------+
3. SDP 参数
下面描述了如何在 SDP 中表示一个 H.264 流:
. "m=" 行中的媒体名必须是 "video"
. "a=rtpmap" 行中的编码名称必须是 "H264".
. "a=rtpmap" 行中的时钟频率必须是 90000.
. 其他参数都包括在 "a=fmtp" 行中.
如:
m=video 49170 RTP/AVP 98
a=rtpmap:98 H264/90000
a=fmtp:98 profile-level-id=42A01E; sprop-parameter-sets=Z0IACpZTBYmI,aMljiA==
下面介绍一些常用的参数.
3.1 packetization-mode:
表示支持的封包模式.
当 packetization-mode 的值为 0 时或不存在时, 必须使用单一 NALU 单元模式.
当 packetization-mode 的值为 1 时必须使用非交错(non-interleaved)封包模式.
当 packetization-mode 的值为 2 时必须使用交错(interleaved)封包模式.
这个参数不可以取其他的值.
3.2 sprop-parameter-sets:
这个参数可以用于传输 H.264 的序列参数集和图像参数 NAL 单元. 这个参数的值采用 Base64 进行编码. 不同的参数集间用","号隔开.
3.3 profile-level-id:
这个参数用于指示 H.264 流的 profile 类型和级别. 由 Base16(十六进制) 表示的 3 个字节. 第一个字节表示 H.264 的 Profile 类型, 第
三个字节表示 H.264 的 Profile 级别:
3.4 max-mbps:
这个参数的值是一个整型, 指出了每一秒最大的宏块处理速度.
辛苦啦。
在组合封包时,NALU 1 Size前面没有提到,它是属于NALU payload吧。也就是说h264的 NALU payload = NALU payload size + NALU payload header + NALU payload data,对吧。如果我的理解不对,请指正,谢谢。 回复 更多评论
@heshui
基本上是这样子的
如有一个 H.264 的 NALU 是这样的:
[00 00 00 01 67 42 A0 1E 23 56 0E 2F ... ]
[00 00 00 01 67 42 A0 1E 23 56 0E 2F ... ]
这是一个序列参数集 NAL 单元. [00 00 00 01] 是四个字节的开始码, 67 是 NALU 头, 42 开始的数据是 NALU 内容.
封装成 RTP 包可能如下:
[ RTP Header ] [78, STAP-A NAL HDR, 一个字节 ] [长度, 两个字节] [ 67 42 A0 1E 23 56 0E 2F ...] [长度, 两个字节] [ 67 42 A0 1E 23 56 0E 2F... ]
回复 更多评论
@暗黑长老
楼主能不能再给我一个分片封包的实际例子,就是说如果NALU 的长度超过 MTU 时RTP包格式应该是怎么样的呢。谢谢。 回复 更多评论
@heshui
/** 发送指定的 NALU 单元. */
int GEPlayback::SendNaluPacket( BYTE* sliceData, int sliceSize, BOOL isEnd,
BOOL isVideo, int type, time_t pts, INT64 timestamp )
{
// NALU 小于最大 RTP 包大小的情况
if (sliceSize < 1350) {
return SendPacket(sliceData, sliceSize, isEnd, TRUE, type, pts, timestamp);
}
// 如果一个 NALU 大于最大的 RTP 包的大小, 则需要把它进行分片后打包发送
BYTE buffer[1500];
BYTE nalHeader = sliceData[0]; // NALU 头
BYTE* data = sliceData + 1;
int leftover = sliceSize - 1;
BOOL isStart = TRUE;
while (leftover > 0) {
int size = MIN(1350, leftover);
isEnd = (size == leftover);
// 构建 FU 头
buffer[0] = (nalHeader & 0x60) | 28; // FU indicator
buffer[1] = (nalHeader & 0x1f); // FU header
if (isStart) {
buffer[1] |= 0x80;
}
if (isEnd) {
buffer[1] |= 0x40;
}
memcpy(buffer + 2, data, size);
SendPacket(buffer, size + 2, isEnd, TRUE, type, pts, timestamp);
leftover -= size;
data += size;
isStart = FALSE;
}
return sliceSize;
}
回复 更多评论
前几天不小心把水泼到本本上,没能即时观注楼主的回复,换了块主板,嘿嘿。
代码很详细,看了例子很清淅。
谢谢楼主多次回复:) 回复 更多评论
非常感谢你,正在研究流媒体,听老牛们说,学这个协议比较好。 回复 更多评论
你是在哪个城市的,方便留个电话什么的联系方式,我们这边有个流媒体相关的项目,寻求工程师合作开发。我邮箱是:[email protected] 回复 更多评论
请教个问题,H.264的RTP发送中三种模式(单NAL单元模式、非交互模式、交互模式)和三种负载结构(单NAL单元包、聚合包、分片包)是怎么区别,我怎么感觉一样 了?谢谢...... 回复 更多评论
@sc
通过这个表可以比较清楚地看出它们的关系:
able 3. Summary of allowed NAL unit types for each packetization
mode (yes = allowed, no = disallowed, ig = ignore)
Type Packet Single NAL Non-Interleaved Interleaved
Unit Mode Mode Mode
-------------------------------------------------------------
0 undefined ig ig ig
1-23 NAL unit yes yes no
24 STAP-A no yes no
25 STAP-B no no yes
26 MTAP16 no no yes
27 MTAP24 no no yes
28 FU-A no yes yes
29 FU-B no no yes
30-31 undefined ig ig ig
回复 更多评论
// 如果一个 NALU 大于最大的 RTP 包的大小, 则需要把它进行分片后打包发送
BYTE buffer[1500];
BYTE nalHeader = sliceData[0]; // NALU 头
BYTE* data = sliceData + 1;
int leftover = sliceSize - 1;
BOOL isStart = TRUE;
while (leftover > 0) {
int size = MIN(1350, leftover);
isEnd = (size == leftover);
问一个问题,楼上程序中的int size = MIN(1350, leftover); 应该是
int size = MAX(1350, leftover); 呢还是MIN,我感觉是MAX,谢谢楼主。
回复 更多评论
@暗黑长老
PTS跟timestamp怎么设定的?? 回复 更多评论
没有看到source code,能share下吗? 回复 更多评论
这篇牛!!!!
贼清楚啦~~~