UDTF
上一篇介绍了基础的UDF——UDF和GenericUDF的实现,这一篇将介绍更复杂的用户自定义表生成函数(UDTF)。用户自定义表生成函数(UDTF)接受零个或多个输入,然后产生多列或多行的输出,如explode()。要实现UDTF,需要继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF,同时实现三个方法
// 该方法指定输入输出参数:输入的Object Inspectors和输出的Struct。
abstract StructObjectInspector initialize(ObjectInspector[] args) throws UDFArgumentException;
// 该方法处理输入记录,然后通过forward()方法返回输出结果。
abstract void process(Object[] record) throws HiveException;
// 该方法用于通知UDTF没有行可以处理了。可以在该方法中清理代码或者附加其他处理输出。
abstract void close() throws HiveException;
其中:在0.13.0中initialize不需要实现。
定义如下:
public abstract class GenericUDTF {
Collector collector;
public GenericUDTF() {
this.collector = null;
}
public void configure(MapredContext mapredContext) {
}
public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
List inputFields = argOIs.getAllStructFieldRefs();
ObjectInspector[] udtfInputOIs = new ObjectInspector[inputFields.size()];
for (int i = 0; i < inputFields.size(); ++i) {
udtfInputOIs[i] = ((StructField) inputFields.get(i)).getFieldObjectInspector();
}
return initialize(udtfInputOIs);
}
@Deprecated
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
throw new IllegalStateException("Should not be called directly");
}
public abstract void process(Object[] paramArrayOfObject) throws HiveException;
public abstract void close() throws HiveException;
public final void setCollector(Collector collector) {
this.collector = collector;
}
protected final void forward(Object o) throws HiveException {
this.collector.collect(o);
}
看一个例子
FUNC(a) - separates the elements of array a into multiple rows, or the elements of a map into multiple rows and columns
/*** Eclipse Class Decompiler plugin, copyright (c) 2016 Chen Chao ([email protected]) ***/
package org.apache.hadoop.hive.ql.udf.generic;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.TaskExecutionException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.MapObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
@Description(name = "explode", value = "_FUNC_(a) - separates the elements of array a into multiple rows, or the elements of a map into multiple rows and columns ")
public class GenericUDTFExplode extends GenericUDTF {
private transient ObjectInspector inputOI;
private final transient Object[] forwardListObj;
private final transient Object[] forwardMapObj;
public GenericUDTFExplode() {
this.inputOI = null;
this.forwardListObj = new Object[1];
this.forwardMapObj = new Object[2];
}
public void close() throws HiveException {
}
public StructObjectInspector initialize(ObjectInspector[] args)
throws UDFArgumentException
{
if (args.length != 1) {
throw new UDFArgumentException("explode() takes only one argument");
}
ArrayList fieldNames = new ArrayList();
ArrayList fieldOIs = new ArrayList();
switch (1.$SwitchMap$org$apache$hadoop$hive$serde2$objectinspector$ObjectInspector$Category[args[0].getCategory().ordinal()])
{
case 1:
this.inputOI = args[0];
fieldNames.add("col");
fieldOIs.add(((ListObjectInspector)this.inputOI).getListElementObjectInspector());
break;
case 2:
this.inputOI = args[0];
fieldNames.add("key");
fieldNames.add("value");
fieldOIs.add(((MapObjectInspector)this.inputOI).getMapKeyObjectInspector());
fieldOIs.add(((MapObjectInspector)this.inputOI).getMapValueObjectInspector());
break;
default:
throw new UDFArgumentException("explode() takes an array or a map as a parameter");
}
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
}
public void process(Object[] o)
throws HiveException
{
Iterator i$;
switch (1.$SwitchMap$org$apache$hadoop$hive$serde2$objectinspector$ObjectInspector$Category[this.inputOI.getCategory().ordinal()])
{
case 1:
ListObjectInspector listOI = (ListObjectInspector)this.inputOI;
List list = listOI.getList(o[0]);
if (list == null) {
return;
}
for (i$ = list.iterator(); i$.hasNext(); ) { Object r = i$.next();
this.forwardListObj[0] = r;
forward(this.forwardListObj);
}
break;
case 2:
MapObjectInspector mapOI = (MapObjectInspector)this.inputOI;
Map map = mapOI.getMap(o[0]);
if (map == null) {
return;
}
for (Map.Entry r : map.entrySet()) {
this.forwardMapObj[0] = r.getKey();
this.forwardMapObj[1] = r.getValue();
forward(this.forwardMapObj);
}
break;
default:
throw new TaskExecutionException("explode() can only operate on an array or a map");
}
}
public String toString() {
return "explode";
}
}
一个分割字符串的例子:
@Description(
name = "explode_name",
value = "_FUNC_(col) - The parameter is a column name."
+ " The return value is two strings.",
extended = "Example:\n"
+ " > SELECT _FUNC_(col) FROM src;"
+ " > SELECT _FUNC_(col) AS (name, surname) FROM src;"
+ " > SELECT adTable.name,adTable.surname"
+ " > FROM src LATERAL VIEW _FUNC_(col) adTable AS name, surname;"
)
public class ExplodeNameUDTF extends GenericUDTF{
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs)
throws UDFArgumentException {
if(argOIs.length != 1){
throw new UDFArgumentException("ExplodeStringUDTF takes exactly one argument.");
}
if(argOIs[0].getCategory() != ObjectInspector.Category.PRIMITIVE
&& ((PrimitiveObjectInspector)argOIs[0]).getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.STRING){
throw new UDFArgumentTypeException(0, "ExplodeStringUDTF takes a string as a parameter.");
}
ArrayList fieldNames = new ArrayList();
ArrayList fieldOIs = new ArrayList();
fieldNames.add("name");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
fieldNames.add("surname");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
}
@Override
public void process(Object[] args) throws HiveException {
// TODO Auto-generated method stub
String input = args[0].toString();
String[] name = input.split(" ");
forward(name);
}
@Override
public void close() throws HiveException {
// TODO Auto-generated method stub
}
}
记住 最后调用forward函数。