TensorFlow集成Android工程的框架

欢迎Follow我的GitHub,关注我的

在Android工程中,集成TensorFlow模型。运行TensorFlow的默认Android工程,请参考。

Android源码:https://github.com/SpikeKing/TFAndroid/tree/master

库及模型的大小

libtensorflow_inference.so  10.2 M
libandroid_tensorflow_inference_java.jar  27 KB
optimized_tfdroid.pb  291 B

如果将so转换为jar库,参考,则TF的so由10.2M缩小至4.1M。

TensorFlow集成Android工程的框架_第1张图片
TF Android

TensorFlow

TF模型源码:
https://github.com/SpikeKing/MachineLearningTutorial/blob/master/tests/android_test.py

创建TensorFlow模型,简单的y=WX+b,存储图信息write_graph,存储参数信息saver.save。输入数据placeholder是I,输出数据是O

import tensorflow as tf

I = tf.placeholder(tf.float32, shape=[None, 3], name='I')  # input
W = tf.Variable(tf.zeros(shape=[3, 2]), dtype=tf.float32, name='W')  # weights
b = tf.Variable(tf.zeros(shape=[2]), dtype=tf.float32, name='b')  # biases
O = tf.nn.relu(tf.matmul(I, W) + b, name='O')  # activation / output

saver = tf.train.Saver()
init_op = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init_op)

    tf.train.write_graph(sess.graph_def, './data/android/', 'tfdroid.pbtxt')  # 存储TensorFlow的图

    # 训练数据,本例直接赋值
    sess.run(tf.assign(W, [[1, 2], [4, 5], [7, 8]]))
    sess.run(tf.assign(b, [1, 1]))

    # 存储checkpoint文件,即参数信息
    saver.save(sess, './data/android/tfdroid.ckpt')

创建Freeze的图,将图结构与参数组合在一起,生成模型,参考。

def gnr_freeze_graph(input_graph, input_saver, input_binary, input_checkpoint,
                     output_node_names, output_graph, clear_devices):
    """
    将输入图与参数结合在一起
    
    :param input_graph: 输入图
    :param input_saver: Saver解析器
    :param input_binary: 输入图的格式,false是文本,true是二进制
    :param input_checkpoint: checkpoint,检查点文件
    
    :param output_node_names: 输出节点名称
    :param output_graph: 保存输出文件
    :param clear_devices: 清除训练设备
    :return: NULL
    """
    restore_op_name = "save/restore_all"
    filename_tensor_name = "save/Const:0"

    freeze_graph.freeze_graph(
        input_graph=input_graph,  # 输入图
        input_saver=input_saver,  # Saver解析器
        input_binary=input_binary,  # 输入图的格式,false是文本,true是二进制
        input_checkpoint=input_checkpoint,  # checkpoint,检查点文件
        output_node_names=output_node_names,  # 输出节点名称
        restore_op_name=restore_op_name,  # 从模型恢复节点的名字
        filename_tensor_name=filename_tensor_name,  # tensor名称
        output_graph=output_graph,  # 保存输出文件
        clear_devices=clear_devices,  # 清除训练设备
        initializer_nodes="")  # 初始化节点

优化模型,剪切节点,模型只保留输入输出的参数。

def gnr_optimize_graph(graph_path, optimized_graph_path):
    """
    优化图
    :param graph_path: 原始图
    :param optimized_graph_path: 优化的图
    :return: NULL
    """
    input_graph_def = tf.GraphDef()  # 读取原始图
    with tf.gfile.Open(graph_path, "r") as f:
        data = f.read()
        input_graph_def.ParseFromString(data)

    # 设置输入输出节点,剪切分支,大约节省1/4
    output_graph_def = optimize_for_inference_lib.optimize_for_inference(
        input_graph_def,
        ["I"],  # an array of the input node(s)
        ["O"],  # an array of output nodes
        tf.float32.as_datatype_enum)

    # 存储优化的图
    f = tf.gfile.FastGFile(optimized_graph_path, "w")
    f.write(output_graph_def.SerializeToString())

执行函数,生成模型,frozen_tfdroid.pboptimized_tfdroid.pb

if __name__ == "__main__":
    input_graph_path = MODEL_FOLDER + MODEL_NAME + '.pbtxt'  # 输入图
    checkpoint_path = MODEL_FOLDER + MODEL_NAME + '.ckpt'  # 输入参数
    output_path = MODEL_FOLDER + 'frozen_' + MODEL_NAME + '.pb'  # Freeze模型

    gnr_freeze_graph(input_graph=input_graph_path, input_saver="",
                     input_binary=False, input_checkpoint=checkpoint_path,
                     output_node_names="O", output_graph=output_path, clear_devices=True)

    optimized_output_graph = MODEL_FOLDER + 'optimized_' + MODEL_NAME + '.pb'

    gnr_optimize_graph(output_path, optimized_output_graph)

Android

编译Android的库,参考,或者,直接在Nightly中下载,参考,archive.zip,大约158M。

创建Android工程,添加app/libs/中添加库文件。

armeabi-v7a/libtensorflow_inference.so
libandroid_tensorflow_inference_java.jar

在build.gradle中,添加

android {
    sourceSets {
        main {
            jniLibs.srcDirs = ['libs']
        }
    }
}

在app/src/main/assets中,添加模型optimized_tfdroid.pb文件。

在MainActivity中,添加so库。

static {
    System.loadLibrary("tensorflow_inference");
}

模型文件在assets中,TF的核心接口类TensorFlowInferenceInterface。

private static final String MODEL_FILE = "file:///android_asset/optimized_tfdroid.pb";

private TensorFlowInferenceInterface mInferenceInterface;

初始模型文件

mInferenceInterface = new TensorFlowInferenceInterface();
mInferenceInterface.initializeTensorFlow(getAssets(), MODEL_FILE);

模型Feed数据,输入点名称是INPUT_NODE,输入结构INPUT_SIZE,输入数据inputFloats。

float[] inputFloats = {num1, num2, num3};
mInferenceInterface.fillNodeFloat(INPUT_NODE, INPUT_SIZE, inputFloats);

模型执行文件,输出点名称是OUTPUT_NODE,即"O"

mInferenceInterface.runInference(new String[]{OUTPUT_NODE});

输出数据结构

float[] resu = {0, 0};
mInferenceInterface.readNodeFloat(OUTPUT_NODE, resu);

最后,在layout中创建GUI布局。

效果

TensorFlow集成Android工程的框架_第2张图片
Demo

TensorFlow集成至春雨医生

TensorFlow集成Android工程的框架_第3张图片
CY-TF

That's all! Enjoy it!

你可能感兴趣的:(TensorFlow集成Android工程的框架)