- HarmonyNext深度解析:ArkUI高效渲染与性能优化实战
披光人
harmonyOSubuntulinux运维
一、HarmonyNext渲染引擎技术演进(约1200字技术解析)HarmonyOSNext在UI渲染架构层面实现了重大突破,其创新的ArkUI渲染引擎采用分层异步架构设计。核心改进包括:原子化渲染管线采用基于Vulkan的跨平台渲染后端,通过原子化渲染指令拆分技术,实现绘制指令的并行执行能力。在华为Mate60系列实测中,复杂界面渲染延迟降低42%智能脏区检测机制基于机器学习的区域更新预测算法,
- webgl threejs 云渲染(服务器渲染、后端渲染)解决方案
allenjiao
Threejswebglthreejs云渲染后端渲染服务器渲染云流化三维云渲染
云渲染和流式传输共享三维模型场景1、本地无需高端GPU设备即可提供三维项目渲染云渲染和云流化媒体都可以让3D模型共享变得简单便捷。配备强大GPU的远程服务器早就可以处理密集的处理工作,而专有应用程序,用户也可以从任何个人设备查看全保真模型并与之交互。2、云流媒体实现多终端联动共享价值更高在项目应用场景中,在大屏、电脑、平板、手机和其它移动终端,可以实现多屏联动、远程协助,三维云流化让客户访问时可以
- 【3DMAX插件】3DMAX建筑大师插件MasterBuilder使用方法
沐风老师
3DMAX3dmax3dmax插件3dmax建筑大师MasterBuilder
3DMAX建筑大师插件是一款专为3DMAX设计的程序化(参数化)建筑建模工具,其最大特点是能够一键生成建筑模型,极大地提升了工作效率。该插件配备了多种结构控制选项,涵盖阳台、门窗、栏杆、楼顶水塔等附属建筑元素,丰富的参数设置允许用户精细调整每个细节,确保每栋建筑都独具特色。更令人赞叹的是,其随机生成功能能在不设定具体参数的情况下,每次生成外观各异的建筑,为设计工作增添无限创意与可能性。【适用版本】
- 【JVM】性能监控与调优概述篇
白晨并不是很能熬夜
JVMjvm后端面试java经验分享求职招聘
大家好,我是白晨,一个不是很能熬夜,但是也想日更的人✈。如果喜欢这篇文章,点个赞,关注一下白晨吧!你的支持就是我最大的动力!文章目录JVM性能监控与调优概述篇背景说明生产环境中的问题为什么要调优不同阶段的考虑调优概述监控的依据调优的大方向性能优化的步骤第一步(发现问题):性能监控第二步(排查问题):性能分析第三步(解决问题):性能调优性能评价/测试指标停顿时间(或响应时间)吞吐量并发数内存站用相互
- HarmonyNext实战:基于ArkTS的跨平台3D图形渲染应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨平台3D图形渲染应用开发引言3D图形渲染是现代应用开发中的一个重要领域,尤其在游戏、虚拟现实和增强现实等场景中。HarmonyOSNext作为新一代操作系统,提供了强大的图形渲染能力,而ArkTS作为其核心开发语言,为开发者提供了高效、简洁的开发体验。本文将深入探讨如何在HarmonyNext平台上使用ArkTS开发一个跨平台的3D图形渲染应用,涵盖3
- HarmonyNext实战:基于ArkTS的跨设备3D游戏开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备3D游戏开发引言随着移动设备和智能终端的普及,3D游戏开发已成为开发者关注的热点领域。HarmonyNext作为新一代操作系统,提供了强大的分布式能力和高效的图形渲染支持,结合ArkTS语言的灵活性和性能优势,为开发跨设备3D游戏提供了全新的可能性。本文将详细讲解如何基于HarmonyNext和ArkTS开发一款跨设备的3D游戏,涵盖从项目搭建到核
- 我的创作纪念日
我爱学习_zwj
前端前端框架华为
机缘在前端开发的广袤天地中,我的创作之旅始于一次充满挑战与机遇的契机。初涉前端领域时,面对复杂多变的项目需求和飞速更新的技术栈,我深刻感受到知识的浩瀚无边,也意识到自身能力的不足。在参与一个大型项目时,我遭遇了许多棘手难题,像页面加载速度的优化、不同浏览器兼容性的处理等。那时,我便产生了一个想法:把在实战中积累的经验以及过去学习的知识记录下来,既能作为自己成长的见证,也能与同行交流分享,携手攻克技
- 基于大模型的单纯性孔源性视网膜脱离预测及治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、单纯性孔源性视网膜脱离概述2.1发病机制2.2高危因素2.3临床表现与诊断方法三、大模型在术前预测中的应用3.1模型选择与数据收集3.2术前风险预测指标3.3预测结果分析与验证四、基于预测结果的手术方案制定4.1手术原则与目标4.2不同预测结果下的手术方式选择4.3手术案例分析五、麻醉方案的确定5.1麻醉方式的选择依据5
- 吴恩达机器学习笔记复盘(二)监督学习和无监督学习
wgc2k
机器学习机器学习笔记学习
监督学习经济价值以及定义监督学习是机器学习中创造了99%经济价值的类型,它是学习输入到输出映射的算法,关键在于给学习算法提供包含正确答案(即给定输入X的正确标签Y)的学习例子。生活中的例子邮件分类,输入是电子邮件,输出是判断邮件是否为垃圾邮件。语音识别,输入音频剪辑,输出文本记录。机器翻译,输入一种语言文本,输出其他语言的相应翻译。在线广告,输入广告和用户信息,预测用户是否点击广告,为公司带来大量
- Vue.js的内联样式绑定:style的多种用法
阿珊和她的猫
vue.js前端javascript
前端开发工程师、技术日更博主、已过CET6阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1牛客高级专题作者、打造专栏《前端面试必备》、《2024面试高频手撕题》、《前端求职突破计划》蓝桥云课签约作者、上架课程《Vue.js和Egg.js开发企业级健康管理项目》、《带你从入门到实战全面掌握uni-app》文章目录引言`style`属性的基本概念`style`属性的用法1.绑定对象2.
- cv君独家视角 | AI内幕系列七:EfficientViT模型:基于多尺度线性注意力模块,实现高效的高分辨率密集预测
cv君
cv君独家视角AI内幕系列原创项目级实战项目深度学习与计算机视觉精品1024程序员节EfficientViT高分辨率密集预测任务高分辨率视觉模型Transformer人工智能计算机视觉
专题概况cv君独家视角|AI内幕系列是一个专注于人工智能领域的深度专题,旨在为读者揭开AI所有领域技术的神秘面纱,展示其背后的科学原理和实际应用。通过一系列精心策划的文章,我们将带您深入了解AI的各个领域,从计算机视觉到文本语音等多模态领域,从基础理论到前沿技术,从行业应用到未来趋势。无论您是AI领域的工程师或者专家,还是对这一领域充满好奇的读者,这个系列都将为您提供高价值的见解和启发,为您带来横
- 实时时钟(RTC)/日历芯片PCF8563的I2C读写驱动(4):基于HAL库实现硬件I2C读写接口
NW嵌入式开发
驱动开发单片机开发Linux开发RTCPCF8563实时时钟I2C驱动
0参考资料PCF8563数据手册(第11版——2015年10月26日).pdf1基于HAL库实现硬件I2C读写接口1.1初始化硬件I2C引脚/***@brief硬件I2C1初始化*配置为350KHz*@returnint0:成功-1:失败*/intbsp_hw_i2c1_init(void){/*速度配置为350KHzI2C1总线挂载器件:1.PCF8563(RTC器件,最高支持400KHz,实测
- 【2025年饿了么春招-3月14日-第二题(200分)- 小红的排列构造】(题目+思路+Java&C++&Python解析+在线测试)
塔子哥学算法
javac++python算法数据结构饿了么
题目内容小红希望你构造一个长度为nnn的排列,满足∑i=1n∗i\sum_{i
- Excel表格模板9000套公司行政管理财务销售计划可视化图表
希希分享
软希网58soho_cnexcelExcel表格模板9000套
9000套Excel表格模板下载:办公常用表格财务会计表格行政人事表格公司管理表格人力资源表格加工与生产表格销售库存表格学生教师表格财务记账表格日周月报表格进销存系列表格库房销售表格超市市场表格家庭个人自用表格可视化图表表格
- 安全中心建设关键技术之机器学习
sinfoyou
安全机器学习人工智能
1.1.1功能要求针对目前广为流行的网银、掌上银行撞库行为,需要围绕撞库防护建立针对性的发现、预警、拦截体系。在本课题在大量数据中自动分析获得规律,并利用规律对未知数据进行预测。通过机器学习重点解决目前无法在识别撞库攻击源IP地址的基础上,进一步识别出被撞库成功的账号。由于机器学习算法需要从数据中自动分析获得规律,所以必须要有历史数据。在针对撞库攻击行为分析的场景中,首先需要获取手机银行和网上银行
- R+VIC模型融合实践技术应用及未来气候变化模型预测
科研的力量
水文地质土壤水文模型VIC模型
在气候变化问题日益严重的今天,水文模型在防洪规划,未来预测等方面发挥着不可替代的重要作用。目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然,这些软件有各自的优点;但是,由于适用的尺度主要的是中小流域,所以在预测气候变化对水文过程影响等方面都有所不足。VIC模型是一个大尺度的半分布式水文模型,其设计之初就是为了模拟大流域的水文过程;它能够计算陆地
- a16z Speedrun:加速科技与娱乐的未来
花生糖@
技术创业之路:从创意到企业科技娱乐AI
引言a16z(AndreessenHorowitz)作为硅谷最具影响力的风投公司之一,一直致力于支持那些打破常规、创造新可能性的创始人。随着科技和娱乐领域的融合日益加深,a16z推出了Speedrun计划,旨在帮助前沿科技和娱乐领域的初创公司快速成长。专注于推动游戏、AI、3D、流媒体、平台、游戏技术、XR等领域的创新。a16z联合创始人马克·安德森(MarcAndreessen)在speedru
- Anthropic 的模型
调皮的芋头
深度学习神经网络机器学习人工智能
Anthropic的模型(特别是Claude系列)之所以在性能和推理能力上表现强劲,可以从技术设计、研究理念、训练方法以及应用优化等多个方面进行详细分析。以下是基于当前信息(截至2025年3月13日)和行业趋势的深入剖析:1.技术设计与安全导向Anthropic由前OpenAI研究员创立,核心理念是将安全性、可解释性和可控性融入模型设计。这种设计哲学直接影响了Claude模型的性能:Constit
- 什么是代理?
AI Echoes
大数据运维
构建有效的代理什么是代理?"代理"的定义多样:完全自主的系统(长期独立运行,使用工具完成复杂任务)遵循预定义工作流的规范性实现在Anthropic的架构体系中:工作流:通过预定义代码路径编排LLM和工具代理:动态自主决策流程和工具使用的系统何时(不)使用代理基本原则:优先选择最简单的解决方案仅在必要时增加复杂性权衡考量:代理系统以延迟/成本换取任务性能明确定义任务→工作流(可预测性)灵活决策需求→
- Java常用集合与映射的线程安全问题深度解析
扣得A艾
java安全开发语言
Java常用集合与映射的线程安全问题深度解析一、线程安全基础认知在并发编程环境下,当多个线程同时操作同一集合对象时,若未采取同步措施,可能导致以下典型问题:数据竞争:多个线程同时修改数据导致结果不可预测状态不一致:部分线程看到集合的中间状态内存可见性:线程本地缓存与主内存数据不同步死循环风险:特定操作引发无限循环(如JDK7的HashMap扩容)二、典型非线程安全集合问题分析1.ArrayList
- java实现国密加解密
分享心得
Javajavavue
1.pom依赖org.bouncycastlebcprov-jdk15to181.662.SM3封装packagecom.yl.encrypt.sm;importorg.bouncycastle.crypto.digests.SM3Digest;importorg.bouncycastle.crypto.macs.HMac;importorg.bouncycastle.crypto.params.
- DeepSeek开源:FlashMLA深度解析:Hopper架构上的大模型推理革命
花生糖@
AIGC学习资料库AI·未来DeepSeek实用集开源架构FlashMLADeepSeek技术AIAIGC
2025年2月24日,DeepSeek以「开源周」首日发布的FlashMLA技术,重新定义了Hopper架构GPU在AI推理领域的性能极限。这款专为NVIDIAH800/H100系列优化的MLA(Multi-headLatentAttention)解码内核,通过突破性算法设计与硬件协同优化,在可变长度序列处理场景中实现了3000GB/s内存带宽与580TFLOPS计算吞吐的里程碑式突破。其开源策略
- Threejs 实现 VR 看房完结
多喜乐 长安宁
threejsvuevrvue.jsthree
效果:threejs3dVr看房gitee地址:threejs-3d-map:1、threejs实现3d地图效果链接:https://blog.csdn.net/qq_57952018/article/details/1430539902、threejs实现vr看房主要代码:src/views/PanoramicView/index.vueimport{computed,onMounted,onU
- Threejs 实现3D 地图(07)3d 地图 完结
多喜乐 长安宁
vuethreejsthreevue.js
ps:本案例主要对省级做了很多操作对于市级还有区级没有进一步完成。大家可以根据自己的需求来调整。目前已经完成了开发但是代码质量不是很好(没时间优化了)后续有空会继续更新,如果你有想做的但是没有实现可以留言给我我会尽量而为。代码又不懂的可以问我我会尽力解答。当然项目中也有我不懂的(借鉴其他博主的思路强行实现)3d地图完结gitee地址:threejs-3d-map:threejs实现3d地图效果包含
- Java常用集合与映射的线程安全问题深度解析
jiajia651304
java安全开发语言
Java常用集合与映射的线程安全问题深度解析一、线程安全基础认知在并发编程环境下,当多个线程同时操作同一集合对象时,若未采取同步措施,可能导致以下典型问题:数据竞争:多个线程同时修改数据导致结果不可预测状态不一致:部分线程看到集合的中间状态内存可见性:线程本地缓存与主内存数据不同步死循环风险:特定操作引发无限循环(如JDK7的HashMap扩容)二、典型非线程安全集合问题分析1.ArrayList
- 安全密码生成器
那曾是梦
安全python
功能实现说明1.灵活配置自定义长度:输入框支持手动输入(默认12),自动校验数字类型字符组合:通过复选框实现四类字符自由组合(大写、小写、数字、符号)默认值支持:初始化时已预设常用参数(长度12,全选字符类型)2.安全增强加密安全:使用secrets模块替代random,符合NIST安全标准配置校验:未选择字符类型时抛出错误,密码长度<8时弹出警告防预测设计:字符选择后随机打乱顺序,避免模式化组合
- 【蓝桥杯集训·每日一题2025】 AcWing 4905. 面包店 python
查理零世
蓝桥杯2025每日一题蓝桥杯算法python
AcWing4905.面包店Week43月14日题目描述贝茜开了一家面包店。贝茜的面包店中只有一个烤箱,该烤箱制作一块饼干需要花费的时间为tCt_CtC,制作一块松饼需要花费的时间为tMt_MtM。烤箱每次只能制作一个糕点,也就是说制作AAA块饼干和BBB块松饼需要花费的时间为A×tC+B×tMA\timest_C+B\timest_MA×tC+B×tM。有NNN个客人来光顾贝茜的生意,编号1∼N
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- TPAMI 2025 | Glissando-Net: 基于单视图的类别级姿态估计与3D重建
小白学视觉
论文解读IEEETPAMI3d深度学习论文解读顶刊论文IEEETPAMI
论文信息Glissando-Net:DeepSinglevIewCategoryLevelPoseeStimationANd3DReconstructionGlissando-Net:基于单视图的类别级姿态估计与3D重建作者:BoSun;HaoKang;LiGuan;HaoxiangLi;PhilipposMordohai;GangHua论文创新点联合估计3D形状和6D姿态:Glissando-N
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多