- 乾坤微前端框架详细使用大全
不知名靓仔
前端框架
引言乾坤微前端框架(Qiankun)是一款轻量级的微前端解决方案,它基于JavaScript的Proxy特性和WebComponents技术,提供了一套简单易用的微前端实现方案。本文将详细介绍乾坤微前端框架的安装、配置、使用方法及常见问题解答,帮助开发者快速上手乾坤微前端框架。1.乾坤简介1.1什么是乾坤?乾坤是一个轻量级的微前端框架,旨在帮助开发者轻松实现微前端架构。它通过主应用(MainApp
- DRM 显示控制与硬件参数配置链路总结(以 i.MX8MP 为例)
DRM显示控制与硬件参数配置链路总结(以i.MX8MP为例)支持作者新书,深入学习嵌入式开发知识:京东购买链接一、核心理解显示参数(如分辨率、时序、色深)最终来源于用户空间,由DRM驱动完成传递与配置,并由LCD控制器驱动实际硬件输出。设备树中通常不写死这些参数。二、显示硬件参数:定义与归属参数项通常设置位置说明分辨率用户空间(如Weston)通过DRMAPI设置,例如1920x1080@60Hz
- 一个小时快速部署大模型,附大模型书:ChatGLM3大模型本地化部署、应用开发与微调!
LLM教程
人工智能langchain知识图谱Agent大模型LLMAI
这个教程有以下几部分构成:硬件配置概念介绍实操测试结果1.硬件配置本文使用的方法配置要求低,没有gpu也可以正常使用(就是有点慢),不管是windows还是linux,都可以无障碍使用大模型,有脚就行,废话少说,let’srock!2.概念介绍几个部署要用到的概念,工具和项目huggingface:类似于模型的github,各种各样的开源模型都可以在这被找到.模型量化技术:这也是我们能够在低端设备
- vscode报错:找不到任务“g++.exe build active file”。(Linux)
错误原因:task.json文件中的“label”和launch.json中的"preLaunchTask"不匹配,要保持这两个参数一致(大部分原因都是因为中英文不匹配)!task.jsonlaunch.json以上是修改后的,因为task文件是自动生成的,label处错误写法是:g++.exe的生成活动文件(中文),而launch文件找不到中文,就报错找不到了。把task文件中的改成英文就可以了
- Halcon学习之select_shape()算子参数介绍
一、算子介绍select_shape()是HALCON中用于基于形状特征筛选区域的关键算子,广泛应用于图像分割、目标检测和工业质检等领域。它允许用户根据指定的几何特征从输入区域集合中选择符合条件的区域。至于为什么单独介绍这个算子呢,因为他筛选特征的方式有太多种了,如果可以熟练的掌握这些特征,那在后面的例程学习以及实际应用中,可谓是得心应手了。二、算子参数select_shape(Regions:S
- Halcon例程学习四:pcb_inspection.hdev
CVer_
Halcon例程学习学习
一、例程介绍这个例程主要是检测pcb电路板中的一些电路线缺陷二、例程相关算子gray_opening_shape()//特定形状结构元的灰度开运算gray_closing_shape()//特定形状结构元的灰度闭运算dyn_threshold()//动态二值化操作三、例程处理流程1.对原图像进行灰度开运算,图像先腐蚀再膨胀。经过灰度开运算后,图像整体会变暗一些,并且会将黑色区域中的白色缺陷进行填充
- Hadoop-Mapreduce入门
Hadoop-Mapreduce入门MapReduce介绍mapreduce设计MapReduce编程规范入门案例WordCountMapReduce介绍MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。知识。Map负责“分”,把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Redu
- Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Edingbrugh.南空
大数据flinkflinkclickhouse大数据
引言在大数据处理领域,ApacheFlink是一款强大的流处理和批处理框架,而ClickHouse则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。FlinkClickHouse连接器为这两者之间搭建了一座桥梁,使得用户能够在Flink中方便地与ClickHouse数据库进行交互,实现数据的读写操作。本文将详细介绍FlinkClickHouse连接器的相关内容,包括其特点、使用方法
- PDF处理控件Spire.PDF教程:在Java中读取PDF,提取文本、图片和表格
CodeCraft Studio
pdfjava国产化Spire.pdf文档处理
在数据驱动的现代开发中,高效处理PDF文档已成为Java开发者不可或缺的核心能力。无论是处理各类发票扫描件、业务分析报告,还是包含丰富图表的技术文档,掌握Java版的PDF解析技术都将大幅提升数据处理效率,充分释放文档中的商业价值。本指南将介绍如何使用Spire.PDFforJava读取PDF文档,涵盖从可搜索的PDF提取文本、表格和图片,以及通过OCR技术从扫描版PDF中读取文本。Spire.P
- PPT处理控件Aspose功能演示:使用C#从PowerPoint文件中提取文本
Lee-Shyllen
Aspose文档开发文档管理asposePPT文档开发文档处理
有时需要从PowerPoint幻灯片中提取文本以执行文本分析。另一方面,可能需要提取文本并将其保存在文件或数据库中以进行进一步处理。因此,本文介绍了如何使用C#从PowerPoint演示文稿中提取文本。特别是,将学习如何从特定的幻灯片或整个演示文稿中提取文本。从PowerPoint幻灯片中提取文本从PowerPoint演示文稿中提取文本为了处理PowerPoint演示文稿,Aspose提供Aspo
- opencv初步学习——图像处理2
这一部分主要讲解如何初步地创建一个图像,以及彩色图像我们的一些基本处理方法一、创建一个灰度图像1-1、zeros()函数[NumPy库]要用到这一个函数,首先我们需要调用我们的NumPy库,这一个函数的作用是可以帮助我们生成一个元素值都是0的二维数组,如果我们把这些数据放到一张图片里面去,那么就对应着我们的一个黑色图像。当然我们也可以通过修改数组中的数字大小来改变图像的颜色(但还是灰度图像)(1)
- 一名工作8年Java开发的技术博主求职经历
MoneyHacksPro
java
本次会议主要分享了2025年3月至4月中旬的求职经历,求职者通过投递简历、调整期望薪资、优化简历等方式寻找工作,但初期未获得面试机会。求职者通过创建“包皮公司”进行模拟面试,了解市场行情并调整自身定位,最终在4月中旬获得两家公司的面试机会并成功入职。求职者总结了简历优化、面试技巧、市场行情分析等经验,强调在求职过程中需根据实际情况灵活调整策略,并注重差异化竞争。——————————————————
- PPT处理控件Aspose.Slides功能演示:使用 C# 在 PowerPoint 演示文稿中创建 SmartArt
Augenstern__zyx
c#htmlcssppt
演示文稿中的SmartArt用于以视觉形式提供信息。有时,选择使简单的文本更具吸引力。而在其他情况下,它用于演示流程图、流程、不同实体之间的关系等。下面将介绍如何使用C#以编程方式在PowerPoint演示文稿中创建SmartArt。目录在PowerPoint中创建SmartArt的.NETAPI使用C#在PowerPoint中创建SmartArt形状使用C#在PowerPoint中访问Smart
- 如何最大化YashanDB数据库的存储性能
数据库
在数据库技术领域,存储性能不仅对数据的读写速度有直接影响,同时也关系到整个系统的效率和穷尽的业务能力。数据库管理员和系统架构师常面临着性能瓶颈、I/O瓶颈等问题,并需要通过优化存储结构、合理设计索引、选择合适的部署架构等手段来提升存储性能。本文将详细解析YashanDB数据库的存储性能优化,包括存储管理、数据结构选择、并行处理等多方面的技术原理和实践要点。存储架构优化部署架构选择YashanDB支
- 量子计算+AI芯片:光子计算如何重构神经网络硬件生态
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站量子计算+AI芯片:光子计算如何重构神经网络硬件生态——2025年超异构计算架构下的万亿参数模型训练革命产业拐点:英伟达BlackwellUltra发布光互连版GPU,IBM量子处理器突破512比特,光子计算商用成本降至$5/TOPS实测突破:Llama3-405B在光子-量子混合集群训练能耗下
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- 蓝桥杯2023国赛-01游戏
weixin_66009678
蓝桥杯游戏深度优先
本题的dfs还是比较复杂的,需要兼顾的条件比较多。这一题是我看了其他人的题才写出来的,菜菜捏,哈哈哈哈哈!!!然后这一题如何确保行之前不相同,是通过二进制来的,具体的在代码中给出了详解。直接上代码://https://www.lanqiao.cn/problems/17100/learning/?page=1&first_category_id=1&sort=students_count&tags
- springboot3.x中集成springdoc-openapi
恋上钢琴的虫
springspringbootjava
springdoc-openapi简介springdoc-openapijava库有助于使用springboot项目自动生成API文档。之前项目组一直用的Swagger库,一方面官方一直不更新,另一方面在SpringBoot升级到3.0.x之后SpringFox也是无法继续支持Swagger了,对此官方给出的建议是用另一种接口文档解决方案SpringDoc1、在pom.xml中引入SpringDo
- 【大厂面试题】千万级大表如何快速删除大量数据
CBeann
【面试题】【架构&案例】【MySQL】java开源springjvmmysql大厂面试题
-作者简介:大厂高级Java开发工程师-称号:CSDN博客专家✨、阿里云博客专家-公众号:云服务小管家。免费的阿里云服务器☁和云环境直接使用-生活:专注于后端技术分享迷茫时可来瞅瞅码农轨迹♂️-服务:提供模拟面试和简历辅导,提供生产项目。内推可私信✉-卷卷群:可以和大家一起学习,一起进步-如果感觉博主的文章还不错的话,请三连支持一下博主哦背景最近在做一个项目,除了验证功能,还需要验证性能,所以前
- 开源语音分离工具大比拼:人声 VS 背景音乐 ⚔️ - 获取干净训练语音 (数据截至 2025年4月17日)!!!
小丁学Java
python人工智能
开源语音分离工具大比拼:人声VS背景音乐⚔️-获取干净训练语音(数据截至2025年4月17日)在音频处理,特别是机器学习训练数据的准备中,获取纯净的人声(去除背景音乐或噪声)是一个常见的痛点。幸运的是,开源社区提供了许多强大的工具来帮助我们完成这项任务!本文将盘点一系列GitHub上的开源语音分离项目,重点关注那些能有效分离“人物语音”和“背景音乐”的工具,并根据GitHub星标⭐(反映社区关注度
- fac-via-ppg 项目使用教程
fac-via-ppg项目使用教程fac-via-ppgForeignAccentConversionbySynthesizingSpeechfromPhoneticPosteriorgrams(Interspeech'19)项目地址:https://gitcode.com/gh_mirrors/fa/fac-via-ppg1.项目目录结构及介绍fac-via-ppg/├──data/│└──fi
- 【资源分享】外文文献检索网站
Bosenya12
资源文献检索
外文文献检索网站Sci-Hub网址链接:https://www.sci-hub.st/Sci-hub是一个可以无限搜索、查阅和下载大量优质论文的数据库。其优点在于可以免费下载论文文献。ScienceDirect网址链接:http://www.sciencedirect.com/ScienceDirect是一个拥有2500多本期刊以及近20000篇文章的科学数据库,里面的文献可以免费检索阅读。Pro
- 扩散模型中的 Transformer:图像生成及其延展应用询问 ChatGPT
DeepSeek大模型官方教程
transformerchatgpt深度学习自然语言处理人工智能ai大模型学习
扩散模型近年来在生成逼真但合成的连续媒体内容方面引起了广泛关注。本次演讲将介绍Transformer在图像生成的扩散模型中的应用,并进一步探讨其更广泛的前景。我们首先简要介绍扩散模型的基础知识以及它们的训练方式,从而建立基本背景。接着,我们讲解曾是扩散模型事实标准的基于UNet的网络架构,这将帮助我们理解引入Transformer架构并推动其发展的动因。随后,我们将深入探讨构成基础架构的核心模块,
- 【论文阅读】Few-Shot PPG Signal Generation via Guided Diffusion Models
Bosenya12
论文阅读
从少量样本数据选择到后处理的整体框架。首先,扩散模型在N样本数据集和指导下的训练。接着,模型生成一个增强的数据集,并进一步优化以提高保真度。最后,这些合成数据与少量样本训练数据集结合,用于基准模型的训练和评估。数据分布从最初的红色变为保真度增强的蓝色,这表明模型与真实数据更加吻合,如简化后的数据分布示意图所示。这篇文章的核心内容是介绍了一种名为BG-Diff(Bi-GuidedDiffusion)
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- 笔记本屏幕亮度忽明忽暗是怎么回事?
当你正在沉浸在写代码、编辑文档或者观看影片的时候,笔记本屏幕突然变暗,或者瞬间又变得刺眼,这不仅打断了你的专注,还可能对眼睛造成伤害。这种屏幕亮度的忽明忽暗,往往令人不悦,也引发了对电脑硬件或软件出现问题的担忧。那么,为什么会出现这种情况呢?更重要的是,我们该如何解决这一问题呢?在本文中,我将与大家分享笔记本屏幕亮度不稳定的可能原因及相应的解决方法,希望能够帮助你迅速恢复屏幕的正常亮度,让你的工作
- .NET9 实现 JSON 序列化和反序列化(Newtonsoft.Json & System.Text.Json)性能测试
为了在.NET9平台上对比Newtonsoft.Json和System.Text.Json的序列化与反序列化的性能,我们可以使用BenchmarkDotNet来进行压测。目录1.项目准备2.基准测试环境3.性能对比a.对象级别的序列化(Object-LevelSerialization)b.对象级别的反序列化(Object-LevelDeserialization)c.API响应级别的序列化(Ap
- .NET9 实现字符串拼接(StringConcatenation)性能测试
ChaITSimpleLove
.NET跨平台.netstring拼接字符串拼接性能测试BenchmarkTestcsharp
为了评估.NET9平台上使用C#中不同字符串拼接操作的性能表现,我们可以使用BenchmarkDotNet这一强大的开源库来构建科学且可重复的基准测试。BenchmarkDotNet能够自动处理诸如JIT编译、预热(Warm-up)、运行次数控制、统计误差分析等底层细节,确保测试结果具有高度准确性与可比性。在.NET9中,使用C#字符串拼接的常见方式包括:使用+运算符使用string.Concat
- 构建未来交互体验:AG-UI 如何赋能智能体与前端通信?
ChaITSimpleLove
AG-UIAIAgent智能体与用户交互协议智能体与用户交互标准化CopilotKit开放的轻量的基于事件的协议
目录什么是AG-UI?⚙️AG-UI主要解决什么问题?AG-UI介绍️核心组件1.协议层(ProtocolLayer)2.标准HTTP客户端(StandardHTTPClient)3.消息类型(MessageType)4.运行Agent(RunningAgent)5.状态管理(StateManagement)️6.工具和交接(ToolsandHandoff)事件(Events)MCPvsA2Avs
- Python实现布林带策略完整代码
程序化交易助手
量化软件Python程序化交易Python量化炒股PTradeQMT量化交易量化软件deepseek
Python实现布林带策略完整代码布林带是个啥玩意儿?我见过太多新手一上来就问"布林带能不能赚钱",这问题就跟问"菜刀能不能切菜"一样。布林带就是个工具,关键看你怎么用。简单来说,它就是在均线上下画两条通道线,股价大部分时间都在这个通道里晃悠。记得去年有个客户,拿着布林带当圣杯,结果亏得妈都不认识。后来我给他看了我的Python策略代码,这哥们才明白原来工具要配合仓位管理和止损。现在他账户已经翻倍
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比