OpenPose训练过程解析(2)

genCOCOMask.m


16 L = length(coco_kpt);
17 %%
18    
19 for i = 1:L
20     if mode == 1
21         img_paths = sprintf('images/train2014/COCO_train2014_%012d.jpg', coco_kpt(i).image_id);  %sprintf('%012d', 20);  ans = 000000000020
22         img_name1 = sprintf('dataset/COCO/mask2014/train2014_mask_all_%012d.png', coco_kpt(i).image_id);
23         img_name2 = sprintf('dataset/COCO/mask2014/train2014_mask_miss_%012d.png', coco_kpt(i).image_id);
24     else
25         img_paths = sprintf('images/val2014/COCO_val2014_%012d.jpg', coco_kpt(i).image_id);
26         img_name1 = sprintf('dataset/COCO/mask2014/val2014_mask_all_%012d.png', coco_kpt(i).image_id);
27         img_name2 = sprintf('dataset/COCO/mask2014/val2014_mask_miss_%012d.png', coco_kpt(i).image_id);
28     end
29
30     try
31         display([num2str(i) '/ ' num2str(L)]);
32         imread(img_name1);      %读取失败,将跳转到catch块进行mask的制作
33         imread(img_name2);
34         continue;
35     catch
36         display([num2str(i) '/ ' num2str(L)]);    %% num2str:把数值转换成字符串, 转换后可以使用fprintf或disp函数进行输出
37         %joint_all(count).img_paths = RELEASE(i).image_id;
38         [h,w,~] = size(imread(['dataset/COCO/', img_paths]));  % h = image.height ; w = image.width
39         mask_all = false(h,w);                    %创建大小 h×w (与原图像相同)的矩阵,所有的元素为逻辑假,即0,下同
40         mask_miss = false(h,w);
41         flag = 0;
OpenPose训练过程解析(2)_第1张图片
mask_all_false.png
42         for p = 1:length(coco_kpt(i).annorect)      % i 为图片的数量, p 为每张图片annorect的维度,即为图片中的人数)
43             %if this person is annotated
44             try
45                 seg = coco_kpt(i).annorect(p).segmentation{1};   %分割的结果(验证是否已进行分割)
46             catch
47                 %display([num2str(i) ' ' num2str(p)]);
48                 mask_crowd = logical(MaskApi.decode( coco_kpt(i).annorect(p).segmentation ));    % logical函数: 将括号里的非零值变为1; MaskApi.decode - Decode binary masks encoded via RLE.(Run Length Encoding自行百度). https://blog.csdn.net/chengyq116/article/details/80489439
49                 temp = and(mask_all, mask_crowd);
50                 mask_crowd = mask_crowd - temp; 
51                 flag = flag + 1;
52                 coco_kpt(i).mask_crowd = mask_crowd;
53                 continue;
54             end
55                 
56             [X,Y] = meshgrid( 1:w, 1:h );      % 用于生成网格矩阵 https://blog.csdn.net/hhhhhyyyyy8/article/details/76209094
57             mask = inpolygon( X, Y, seg(1:2:end), seg(2:2:end));   %inpolygon(x,y,xv,yv)%注意xv,yv构成了多边形边界。x,y对应的是单点坐标,判断是否在多边形内,返回结果为逻辑logical类型(不是数字类型哦),如果在对应的就返回1,否则为0
58             mask_all = or(mask, mask_all);     % mask_all之前为全0
59                 
60             if coco_kpt(i).annorect(p).num_keypoints <= 0   % 如果没有keypoints标注,则标记为mask_miss,取反后未标注处值为1,避免进行惩罚; 若一张图片中每个人的keypoints均有标注,则mask_miss矩阵全为0,然后在Line68中取反,这样所有标注的关节点W(p) = 1;
61                 mask_miss = or(mask, mask_miss);
62             end
63         end

  • Line56 : meshgrid 网格


    OpenPose训练过程解析(2)_第2张图片
    meshgrid X.png
OpenPose训练过程解析(2)_第3张图片
meshgrid Y.png
  • Line57 : 利用Line45的分割结果seg生成mask


    OpenPose训练过程解析(2)_第4张图片
    mask边界.png
64         if flag == 1                  %注意,此处程序处理完了单张图片中的所有人,进入flag判断
65              mask_miss = not(or(mask_miss,mask_crowd));
66              mask_all = or(mask_all, mask_crowd);          
67          else
68              mask_miss = not(mask_miss);            %取反
69          end
70          
71          coco_kpt(i).mask_all = mask_all;
72          coco_kpt(i).mask_miss = mask_miss;
73          
74          if mode == 1
75              img_name = sprintf('dataset/COCO/mask2014/train2014_mask_all_%012d.png', coco_kpt(i).image_id);
76              imwrite(mask_all,img_name);
77              img_name = sprintf('dataset/COCO/mask2014/train2014_mask_miss_%012d.png', coco_kpt(i).image_id);
78              imwrite(mask_miss,img_name);
79          else
80              img_name = sprintf('dataset/COCO/mask2014/val2014_mask_all_%012d.png', coco_kpt(i).image_id);
81              imwrite(mask_all,img_name);
82              img_name = sprintf('dataset/COCO/mask2014/val2014_mask_miss_%012d.png', coco_kpt(i).image_id);
83              imwrite(mask_miss,img_name);
84          end
85        
86          if flag == 1 && vis == 1      %用于查看
87              im = imread(['dataset/COCO/', img_paths]);
88              mapIm = mat2im(mask_all, jet(100), [0 1]);      %mat2im - convert to rgb image  https://ww2.mathworks.cn/matlabcentral/fileexchange/26322-mat2im
89              mapIm = mapIm*0.5 + (single(im)/255)*0.5;
90              figure(1),imshow(mapIm);
91              mapIm = mat2im(mask_miss, jet(100), [0 1]);     %jet是颜色图数组  https://ww2.mathworks.cn/help/matlab/ref/jet.html
92              mapIm = mapIm*0.5 + (single(im)/255)*0.5;
93              figure(2),imshow(mapIm);
94              mapIm = mat2im(mask_crowd, jet(100), [0 1]);
95              mapIm = mapIm*0.5 + (single(im)/255)*0.5;
96              figure(3),imshow(mapIm);
97              pause;
98              close all;
99          elseif flag > 1
100             display([num2str(i) ' ' num2str(p)]);
101          end
102      end
103  end
  • Line68 : mask_miss取反


    OpenPose训练过程解析(2)_第5张图片
    mask_miss_afterProcess.png
  • Line71 : coco_kpt添加mask_all列


    OpenPose训练过程解析(2)_第6张图片
    coco_kpt_add_mask_all.png

你可能感兴趣的:(OpenPose训练过程解析(2))