HashMap 的实例有两个参数影响其性能:“初始容量” 和 “加载因子”。容量 是哈希表中桶的数量,初始容量 只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap 类的操作中,包括 get 和 put 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。
HashMap与Map的关系:
HashMap是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table, size, threshold, loadFactor, modCount。
- table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的"key-value键值对"都是存储在Entry数组中的。
- size是HashMap的大小,它是HashMap保存的键值对的数量。
- threshold是HashMap的阈值,用于判断是否需要调整HashMap的容量。threshold的值="容量*加载因子",当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
- loadFactor就是加载因子。
- modCount是用来实现fail-fast机制的。
HashMap源码
package java.util;
import java.io.*;
public class HashMap
extends AbstractMap
implements Map, Cloneable, Serializable
{
// 默认的初始容量是16,必须是2的幂。
static final int DEFAULT_INITIAL_CAPACITY = 16;
// 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 存储数据的Entry数组,长度是2的幂。
// HashMap是采用拉链法实现的,每一个Entry本质上是一个单向链表
// transient关键字修饰的字段是不能够被序列化的
transient Entry[] table;
// HashMap的大小,它是HashMap保存的键值对的数量
transient int size;
// HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子)
int threshold;
// 加载因子实际大小
final float loadFactor;
// HashMap被改变的次数
transient volatile int modCount;
// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// HashMap的最大容量只能是MAXIMUM_CAPACITY
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// 找出“大于initialCapacity”的最小的2的幂
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
// 设置“加载因子”
this.loadFactor = loadFactor;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
threshold = (int)(capacity * loadFactor);
// 创建Entry数组,用来保存数据
table = new Entry[capacity];
init();
}
// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 默认构造函数。
public HashMap() {
// 设置“加载因子”
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 设置“HashMap阈值”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
// 创建Entry数组,用来保存数据
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
// 包含“子Map”的构造函数
public HashMap(Map extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
// 将m中的全部元素逐个添加到HashMap中
putAllForCreate(m);
}
static int hash(int h) {
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
// 返回索引值
// h & (length-1)保证返回值的小于length
static int indexFor(int h, int length) {
return h & (length-1);
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
// 获取key对应的value
public V get(Object key) {
if (key == null)
return getForNullKey();
// 获取key的hash值
int hash = hash(key.hashCode());
// 在“该hash值对应的链表”上查找“键值等于key”的元素
for (Entry e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}
// 获取“key为null”的元素的值
// HashMap将“key为null”的元素存储在table[0]位置!
private V getForNullKey() {
for (Entry e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
// HashMap是否包含key
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
// 返回“键为key”的键值对
final Entry getEntry(Object key) {
// 获取哈希值
// HashMap将“key为null”的元素存储在table[0]位置,“key不为null”的则调用hash()计算哈希值
int hash = (key == null) ? 0 : hash(key.hashCode());
// 在“该hash值对应的链表”上查找“键值等于key”的元素
for (Entry e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
// 将“key-value”添加到HashMap中
public V put(K key, V value) {
// 若“key为null”,则将该键值对添加到table[0]中。
if (key == null)
return putForNullKey(value);
// 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry e = table[i]; e != null; e = e.next) {
Object k;
// 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 若“该key”对应的键值对不存在,则将“key-value”添加到table中
modCount++;
addEntry(hash, key, value, i);
return null;
}
// putForNullKey()的作用是将“key为null”键值对添加到table[0]位置
private V putForNullKey(V value) {
for (Entry e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 这里的完全不会被执行到!
modCount++;
addEntry(0, null, value, 0);
return null;
}
// 创建HashMap对应的“添加方法”,
// 它和put()不同。putForCreate()是内部方法,它被构造函数等调用,用来创建HashMap
// 而put()是对外提供的往HashMap中添加元素的方法。
private void putForCreate(K key, V value) {
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
// 若该HashMap表中存在“键值等于key”的元素,则替换该元素的value值
for (Entry e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
e.value = value;
return;
}
}
// 若该HashMap表中不存在“键值等于key”的元素,则将该key-value添加到HashMap中
createEntry(hash, key, value, i);
}
// 将“m”中的全部元素都添加到HashMap中。
// 该方法被内部的构造HashMap的方法所调用。
private void putAllForCreate(Map extends K, ? extends V> m) {
// 利用迭代器将元素逐个添加到HashMap中
for (Iterator extends Map.Entry extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry extends K, ? extends V> e = i.next();
putForCreate(e.getKey(), e.getValue());
}
}
// 重新调整HashMap的大小,newCapacity是调整后的单位
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
// 然后,将“新HashMap”赋值给“旧HashMap”。
Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}
// 将HashMap中的全部元素都添加到newTable中
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry e = src[j];
if (e != null) {
src[j] = null;
do {
Entry next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}
// 将"m"的全部元素都添加到HashMap中
public void putAll(Map extends K, ? extends V> m) {
// 有效性判断
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
// 计算容量是否足够,
// 若“当前实际容量 < 需要的容量”,则将容量x2。
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
// 通过迭代器,将“m”中的元素逐个添加到HashMap中。
for (Iterator extends Map.Entry extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
Map.Entry extends K, ? extends V> e = i.next();
put(e.getKey(), e.getValue());
}
}
// 删除“键为key”元素
public V remove(Object key) {
Entry e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
// 删除“键为key”的元素
final Entry removeEntryForKey(Object key) {
// 获取哈希值。若key为null,则哈希值为0;否则调用hash()进行计算
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
Entry prev = table[i];
Entry e = prev;
// 删除链表中“键为key”的元素
// 本质是“删除单向链表中的节点”
while (e != null) {
Entry next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
// 删除“键值对”
final Entry removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return null;
Map.Entry entry = (Map.Entry) o;
Object key = entry.getKey();
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
Entry prev = table[i];
Entry e = prev;
// 删除链表中的“键值对e”
// 本质是“删除单向链表中的节点”
while (e != null) {
Entry next = e.next;
if (e.hash == hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
// 清空HashMap,将所有的元素设为null
public void clear() {
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)
tab[i] = null;
size = 0;
}
// 是否包含“值为value”的元素
public boolean containsValue(Object value) {
// 若“value为null”,则调用containsNullValue()查找
if (value == null)
return containsNullValue();
// 若“value不为null”,则查找HashMap中是否有值为value的节点。
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
// 是否包含null值
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}
// 克隆一个HashMap,并返回Object对象
public Object clone() {
HashMap result = null;
try {
result = (HashMap)super.clone();
} catch (CloneNotSupportedException e) {
// assert false;
}
result.table = new Entry[table.length];
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
// 调用putAllForCreate()将全部元素添加到HashMap中
result.putAllForCreate(this);
return result;
}
// Entry是单向链表。
// 它是 “HashMap链式存储法”对应的链表。
// 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
static class Entry implements Map.Entry {
final K key;
V value;
// 指向下一个节点
Entry next;
final int hash;
// 构造函数。
// 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
Entry(int h, K k, V v, Entry n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 判断两个Entry是否相等
// 若两个Entry的“key”和“value”都相等,则返回true。
// 否则,返回false
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
// 实现hashCode()
public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
// 当向HashMap中添加元素时,绘调用recordAccess()。
// 这里不做任何处理
void recordAccess(HashMap m) {
}
// 当从HashMap中删除元素时,绘调用recordRemoval()。
// 这里不做任何处理
void recordRemoval(HashMap m) {
}
}
// 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
void addEntry(int hash, K key, V value, int bucketIndex) {
// 保存“bucketIndex”位置的值到“e”中
Entry e = table[bucketIndex];
// 设置“bucketIndex”位置的元素为“新Entry”,
// 设置“e”为“新Entry的下一个节点”
table[bucketIndex] = new Entry(hash, key, value, e);
// 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小
if (size++ >= threshold)
resize(2 * table.length);
}
// 创建Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
// 它和addEntry的区别是:
// (01) addEntry()一般用在 新增Entry可能导致“HashMap的实际容量”超过“阈值”的情况下。
// 例如,我们新建一个HashMap,然后不断通过put()向HashMap中添加元素;
// put()是通过addEntry()新增Entry的。
// 在这种情况下,我们不知道何时“HashMap的实际容量”会超过“阈值”;
// 因此,需要调用addEntry()
// (02) createEntry() 一般用在 新增Entry不会导致“HashMap的实际容量”超过“阈值”的情况下。
// 例如,我们调用HashMap“带有Map”的构造函数,它绘将Map的全部元素添加到HashMap中;
// 但在添加之前,我们已经计算好“HashMap的容量和阈值”。也就是,可以确定“即使将Map中
// 的全部元素添加到HashMap中,都不会超过HashMap的阈值”。
// 此时,调用createEntry()即可。
void createEntry(int hash, K key, V value, int bucketIndex) {
// 保存“bucketIndex”位置的值到“e”中
Entry e = table[bucketIndex];
// 设置“bucketIndex”位置的元素为“新Entry”,
// 设置“e”为“新Entry的下一个节点”
table[bucketIndex] = new Entry(hash, key, value, e);
size++;
}
// HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。
// 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
private abstract class HashIterator implements Iterator {
// 下一个元素
Entry next;
// expectedModCount用于实现fast-fail机制。
int expectedModCount;
// 当前索引
int index;
// 当前元素
Entry current;
HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
// 将next指向table中第一个不为null的元素。
// 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。
while (index < t.length && (next = t[index++]) == null)
;
}
}
public final boolean hasNext() {
return next != null;
}
// 获取下一个元素
final Entry nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry e = next;
if (e == null)
throw new NoSuchElementException();
// 注意!!!
// 一个Entry就是一个单向链表
// 若该Entry的下一个节点不为空,就将next指向下一个节点;
// 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
}
// 删除当前元素
public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
// value的迭代器
private final class ValueIterator extends HashIterator {
public V next() {
return nextEntry().value;
}
}
// key的迭代器
private final class KeyIterator extends HashIterator {
public K next() {
return nextEntry().getKey();
}
}
// Entry的迭代器
private final class EntryIterator extends HashIterator> {
public Map.Entry next() {
return nextEntry();
}
}
// 返回一个“key迭代器”
Iterator newKeyIterator() {
return new KeyIterator();
}
// 返回一个“value迭代器”
Iterator newValueIterator() {
return new ValueIterator();
}
// 返回一个“entry迭代器”
Iterator> newEntryIterator() {
return new EntryIterator();
}
// HashMap的Entry对应的集合
private transient Set> entrySet = null;
// 返回“key的集合”,实际上返回一个“KeySet对象”
public Set keySet() {
Set ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
// Key对应的集合
// KeySet继承于AbstractSet,说明该集合中没有重复的Key。
private final class KeySet extends AbstractSet {
public Iterator iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}
// 返回“value集合”,实际上返回的是一个Values对象
public Collection values() {
Collection vs = values;
return (vs != null ? vs : (values = new Values()));
}
// “value集合”
// Values继承于AbstractCollection,不同于“KeySet继承于AbstractSet”,
// Values中的元素能够重复。因为不同的key可以指向相同的value。
private final class Values extends AbstractCollection {
public Iterator iterator() {
return newValueIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
HashMap.this.clear();
}
}
// 返回“HashMap的Entry集合”
public Set> entrySet() {
return entrySet0();
}
// 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象
private Set> entrySet0() {
Set> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
// EntrySet对应的集合
// EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
private final class EntrySet extends AbstractSet> {
public Iterator> iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry) o;
Entry candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}
// java.io.Serializable的写入函数
// 将HashMap的“总的容量,实际容量,所有的Entry”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
Iterator> i =
(size > 0) ? entrySet0().iterator() : null;
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
// Write out number of buckets
s.writeInt(table.length);
// Write out size (number of Mappings)
s.writeInt(size);
// Write out keys and values (alternating)
if (i != null) {
while (i.hasNext()) {
Map.Entry e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}
}
private static final long serialVersionUID = 362498820763181265L;
// java.io.Serializable的读取函数:根据写入方式读出
// 将HashMap的“总的容量,实际容量,所有的Entry”依次读出
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the threshold, loadfactor, and any hidden stuff
s.defaultReadObject();
// Read in number of buckets and allocate the bucket array;
int numBuckets = s.readInt();
table = new Entry[numBuckets];
init(); // Give subclass a chance to do its thing.
// Read in size (number of Mappings)
int size = s.readInt();
// Read the keys and values, and put the mappings in the HashMap
for (int i=0; i