- AI人工智能深度学习算法:高并发场景下深度学习代理的性能调优
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度学习代理的兴起近年来,随着人工智能技术的飞速发展,深度学习在各个领域都取得了显著的成果。特别是在自然语言处理、图像识别、语音识别等领域,深度学习模型的性能已经超越了传统方法。为了更好地将深度学习技术应用于实际场景,深度学习代理应运而生。深度学习代理是一种将深度学习模型封装起来,并提供对外接口的服务。它可以接收来自客户端的请求,将请求数据输入到深度学习模型中进行推理,并将推理结
- scrapy学习之爬虫练习平台爬取
LLLibra146
爬虫python
本文章首发于个人博客,链接为:https://blog.d77.xyz/archives/35dbd7c9.html前言为了练习Scrapy,找了一个爬虫练习平台,网址为:https://scrape.center/,目前爬取了前十个比较简单的网站,在此感谢平台作者提供的练习平台。环境搭建开始爬取前,首先要先把环境搭建起来,Pycharm新建项目learnscrapy和对应的虚拟环境,安装好Scr
- 如何学习爬虫技术:从入门到实践的全面指南
CodeJourney.
学习爬虫
一、引言在当今数字化时代,网络上的数据量呈爆炸式增长,能够高效地获取和处理这些数据变得愈发重要。爬虫技术作为一种从网页中自动提取信息的手段,在各个领域都有着广泛的应用,无论是数据分析、机器学习的数据集构建,还是市场调研、价格监测等商业场景,掌握爬虫技术都能为你打开一扇获取丰富信息资源的大门。然而,对于初学者来说,面对琳琅满目的工具和复杂的网络环境,可能会感到无从下手。本文将带你逐步深入了解爬虫技术
- 微服务与docker
当归1024
docker微服务docker架构
准备工作在课前资料中给大家提供了黑马商城项目的资料,我们需要先导入这个单体项目。不过需要注意的是,本篇及后续的微服务学习都是基于Centos7系统下的Docker部署,因此你必须做好一些准备:Centos7的环境及一个好用的SSH客户端装好Docker会使用Docker如果是学习过上面Docker课程的同学,虚拟机中已经有了黑马商城项目及MySQL数据库了,不过为了跟其他同学保持一致,可以先将整个
- WPF中DataContext的规范写法
C#气氛组队员
WPFC#wpfuimicrosoft
学习过程:初学WPF,一般会在窗口的构造函数中进行数据绑定。如下所示:usingSystem.Windows;namespaceWpfApp1{//////MainWindow.xaml的交互逻辑///publicpartialclassMainWindow:Window{publicMainWindow(){InitializeComponent();DataContext=newViewMod
- 将机器学习算法移植到低端MCU上的实用指南
为也科技
AI边缘计算机器学习算法单片机嵌入式硬件pythonc语言物联网
将机器学习算法移植到低端MCU上的实用指南在物联网(IoT)和边缘计算迅猛发展的今天,将智能功能嵌入到资源有限的低端单片机(MicrocontrollerUnit,MCU)上,已经成为许多开发者和工程师追求的目标。然而,这一过程充满挑战,但只要掌握正确的方法,也能在低端MCU上实现高效的机器学习应用。本文将以具体的案例为例,逐步讲解每个步骤的实际操作,包括所需的工具、命令和代码示例,帮助开发者成功
- AI时代的PPT革命:智能生成PPT工具为何备受青睐?
HUIPPT剑盾ai
人工智能aigc
在日常工作和学习中,PPT是我们不可或缺的表达工具。制作一份精美的PPT常常需要耗费数小时,甚至几天的时间。从选择主题到调整排版,琐碎的细节让人筋疲力尽。但现在一种名为“AI生成PPT”的技术正悄然崛起,彻底颠覆了传统PPT制作的方式。智能生成PPT:效率与创意的双赢传统PPT的制作流程,既考验技术,又考验审美。如果你不是设计师,很可能被花哨的模板和配色难倒。随着智能技术的不断突破,诸如huipp
- 【2024最新】渗透测试工具大全(超详细),收藏这一篇就够了!
渗透谢老丝
linuxweb安全网络安全密码学系统安全
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包所有工具仅能在取得足够合法授权的企业安全建设中使用,在使用所有工具过程中,您应确保自己所有行为符合当地的法律法规。如您在使用所有工具的过程中存在任何非法行为,您将自行承担所有后果,所有工具所有开发者和所有贡献者不承担任何法律及连带责任。除非您已充分阅读、完全理解并接受本协议所有条款,否则,请您不要安装并使用以下所有工具。您的使用行为或
- 利用百度物联网MQTT平台远程在线聊天室的实现,使用自带GUI,并通过Pyinstaller进行exe打包
wss2210
python物联网ui
一、项目简介XIBI(随便取的)是一个简单的聊天工具,通过MQTT协议实现消息的发布和订阅。你可以通过它和连接到同一个MQTT服务器的其他小伙伴聊天。当然,你也可以把它当作一个学习MQTT协议的练手项目。主要功能:连接MQTT服务器:输入昵称,点击连接按钮,就可以加入聊天室。发送消息:在输入框里输入你想说的话,按下回车键或者点击发送按钮,消息就会发送到所有连接到服务器的客户端。接收消息:当其他用户
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- 免费获取Photoshop及其他设计软件的使用权限
明 庭
photoshopui
在数字创意领域,设计软件的使用已成为必不可少的技能。通过Edu教育邮箱,学生和教育工作者可以免费获得Photoshop以及其他Adobe系列软件,如Illustrator、AfterEffects等。此外,JetBrains系列软件也同样为教育用户提供了免费的使用权限。这意味着你可以在学习和创作中,充分利用这些强大的工具,而无需承担高额的许可证费用。Photoshop及其他软件的申请方式申请这些软
- 14天学习微服务-->第2天:Spring Cloud深入与实践
码上分享
学习微服务springcloud
第2天:SpringCloud深入与实践一、SpringCloud核心组件深入在微服务架构中,SpringCloud提供了一系列核心组件来支持服务的注册与发现、配置管理、负载均衡等功能。今天我们将深入学习其中的三个关键组件:Eureka/Nacos(服务注册与发现)、SpringCloudConfig(配置中心)和Ribbon(负载均衡)。二、Eureka/Nacos:服务注册与发现服务注册与发现
- SQLmap 自动注入 -02
shenghuiping2001
网络安全sqlmapsql注入webmysql
1:如果想获得SQL数据库的信息,可以加入参数:-dbssqlmap-u"http://192.168.56.133/mutillidae/index.php?page=user-info.php&username=xiaosheng&password=abc&user-info-php-submit-button=View+Account+Details"--batch-pusername-db
- 深度学习-92-大语言模型LLM之基于langchain的模型IO的模型调用
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Model的输入输出2langchain支持的模型3调用Ollama模型3.1设置环境变量3.2大语言模型LLM(OllamaLLM)3.2.1生成文本补全3.2.2流式生成文本补全3.3聊天模型(ChatOllama)3.3.1内置的消息类型3.3.2HumanMessage和SystemMessage3.3.3元组方式构成消息列表3.3.4stream流式3.4文本嵌入模型(Olla
- 静态代理和动态代理学习
都要好好的O
java基础java动态代理静态代理
静态代理学习:目标对象和代理对象共同实现的接口packagestaticproxy;publicinterfaceTargetInterface{//说话的方法publicvoidsay();//吃饭的方法publicvoideat();}目标类packagestaticproxy;//目标对象publicclassTargetimplementsTargetInterface{@Override
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- mybatis学习(14/134)
一缕叶
mybatismybatis学习
packagecom.power.mybatsi.test;importorg.apache.ibatis.io.Resources;importorg.apache.ibatis.session.SqlSession;importorg.apache.ibatis.session.SqlSessionFactory;importorg.apache.ibatis.session.SqlSessi
- mybatis学习(7/134)
一缕叶
学习
简单了解了一下maven,https://chatgpt.com/share/678bb629-bb4c-800c-8f3b-a41d298e5467,xml还是比较方便的,对于部署或者打包之类的,只需要配置对应的代码,idea会自动到对应的中央库中下载,还可以从国内的镜像去下载,mybatis需要配置对应的mysql-connetion-java,但是版本不要需要与sql的版本相同,我今天以为需
- DSP实验七 综合实验与考查
BeBeter」
DigitalSignalProcessingDSPmatlab
目录一、实验目的二、需验证的理论三、实验内容四、实验指导五、实验设计报告要求六、思考题【实验过程】1、语音采样、时域波形、频域波形2、延时3、混响4、单回声5、多重回声6、无限回声7、全通结构混响器8、IIR低通滤波器处理9、IIR带通滤波器处理10、IIR高通滤波器处理11、FIR高通滤波器处理12、FIR低通滤波器处理13、FIR带通滤波器处理14、加噪声、用FIR低通滤去噪声/用IIR低通滤
- AI Agent:深度解析与未来展望
码事漫谈
c++人工智能
一、AIAgent的前世:从概念到萌芽(一)早期探索AIAgent的概念可以追溯到20世纪50年代,早期的AI研究主要集中在简单的规则系统上,这些系统的行为是确定性的,输出由输入决定。随着时间的推移,AI逐渐能够处理不确定性,1990年代机器学习的兴起为AIAgent的发展奠定了基础,神经网络技术的突破为深度学习的发展提供了可能。(二)技术突破2017年后,大语言模型(LLM)的出现推动了AIAg
- VMware Tools 13.0.0 发布 - 客户机操作系统无缝交互必备组件
vmware
VMwareTools13.0.0发布-客户机操作系统无缝交互必备组件VMware虚拟机必备组件(驱动和交互式服务)VMwareTools13.0.0发布-虚拟机必备组件(驱动和交互式服务)VMware客户机操作系统无缝交互必备组件请访问原文链接:https://sysin.org/blog/vmware-tools-13/查看最新版。原创作品,转载请保留出处。作者主页:sysin.orgVMwa
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 掌控 React 表单:详解受控组件和非受控组件
大家好,我是长林啊!一个爱好JavaScript、Go、Rust的全栈开发者;致力于终生学习和技术分享。本文首发在我的微信公众号【长林啊】,欢迎大家关注、分享、点赞!在开发过程中,经常涉及到用户输入的表单处理;表单可以分为两种类型:受控表单(ControlledComponents)和非受控表单(UncontrolledComponents)。这两种表单在处理用户输入和状态管理时有着不同的方式。例
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 小土堆学习笔记10(利用GPU训练于模型验证)
干啥都是小小白
pytorch学习——小土堆学习笔记深度学习
1.利用GPU训练GPU可优化操作如下操作方法1方法2数据获取判断是否可以使用GPU,如果可以直接model.cuda()先设定device,用的时候直接model.to(“device”)损失函数1.1利用以前实战模型训练(经过完整测试最高到70%左右的正确率)实战模型如下:小土堆学习笔记5(sequential与小实战)-CSDN博客具体代码如下:classmymodel(Module):de
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
2401_89759264
人工智能前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- 14天学习微服务-->第1天:微服务架构入门
码上分享
架构学习微服务
一、微服务架构概述微服务架构是一种将复杂应用程序分解为一组小型、独立服务的架构风格。每个服务围绕特定的业务功能构建,并且可以独立部署和扩展。这种架构风格在过去十年中迅速发展,成为构建现代分布式系统的首选方式之一。二、微服务架构与单体架构的区别特性微服务架构单体架构服务划分按业务功能拆分为多个独立服务所有功能集成在一个大型应用程序中技术栈可以使用不同的技术栈开发不同服务通常使用统一的技术栈部署方式独
- 【Node.js]
ADFVBM
面试学习路线阿里巴巴node.js
一、概述Node.js是一个基于ChromeV8引擎的JavaScript运行环境,使用了一个事件驱动、非阻塞式I/O模型,让JavaScript运行在服务端的开发平台,它让JavaScript成为与PHP、Python、Perl、Ruby等服务端语言平起平坐的脚本语言。官网地址:https://nodejs.org/zh-cnNode.js学习路线:JavaScript基础语法+Node.js内
- 【强化学习】Unity ML-Agents框架
大雨淅淅
人工智能unity游戏引擎机器学习人工智能深度学习学习
目录一、UnityML-Agents简介二、安装与配置三、基础使用四、关键技术点五、进阶技巧与案例分析六、学习资源七、常见问题与解决方案八、实战项目与案例研究九、未来展望与发展趋势十、结语一、UnityML-Agents简介UnityML-Agents是一个由UnityTechnologies开发的开源项目,它允许开发者利用机器学习技术来训练虚拟环境中的智能代理(Agent)。无论是希望创建更逼真
- 稀疏矩阵介绍及实现
xiaoshiguang3
我的数据结构数据结构
重新学学数据结构和算法,做个笔记记录下学习过程,今天也要加油鸭稀疏矩阵1、基本介绍当一个数组中大部分元素为0,或者为同一个值的数组时,可以使用稀疏数组来保存该数组。2、稀疏数组的处理方法1)记录数组一共有几行几列,有多少个不同的值(假设有sum个,则稀疏矩阵有sum+1行,3列)2)把具有不同值的元素的行列及值记录在一个小规模的数组中,从而缩小程序的规模3、举例说明4、应用使用稀疏数组,来保留类似
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。