323. Number of Connected Components in an Undirected Graph

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:

     0          3
     |          |
     1 --- 2    4
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.

Example 2:

     0           4
     |           |
     1 --- 2 --- 3
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.

Note:
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

类似200 Number of Islands: http://www.jianshu.com/p/f834dbd46dd3

Solution1:Union Find

思路: Typical union find
1_a: routine
1_b: short version
Time Complexity: O(ElogV) ? Space Complexity: O(V)

Solution2:DFS (recursive)

思路: dfs visit,跳过已经visit的,记录遍历中visit的次数作为结果
Time Complexity: O(E+V) Space Complexity: O(E+V)

Solution3:DFS (stack)

思路: dfs visit,跳过已经visit的,记录遍历中visit的次数作为结果,思路同2,stack实现。
Time Complexity: O(E+V) Space Complexity: O(E+V)

Solution4:BFS (queue)

思路: dfs visit,跳过已经visit的,记录遍历中visit的次数作为结果,思路同。
实现同3,将stack改为queue即可。
Time Complexity: O(E+V) Space Complexity: O(E+V)

Solution1a Code:

class Solution {
    
    class UF {
        private int[] id;  
        private int[] sz;  // for an id, the number of elements in that id
        private int count; // number of sort of id

        public UF(int n) {
            
            this.id = new int[n];
            this.sz = new int[n];
            this.count = 0;
            
            // init
            for (int i = 0; i < n; i++) {
                this.id[i] = i;
                this.sz[i] = 1;
                this.count++;
            }
        }

        public void union(int p, int q) {
            int p_root = find(p), q_root = find(q);
            // weighted quick union
            ///*
            if(p_root == q_root) return;
            if (sz[p_root] < sz[q_root]) { 
                id[p_root] = q_root; sz[q_root] += sz[p_root];
            } else {
                id[q_root] = p_root; sz[p_root] += sz[q_root];
            }
            --count;
            //*/
            
            // regular
            /*
            if(p_root == q_root) return;
            id[p_root] = q_root;
            --count;
            */
        }

        public int find(int i) { // path compression
            for (;i != id[i]; i = id[i])
                id[i] = id[id[i]]; 
            return i;
        }

        public boolean connected(int p, int q) {
            int p_root = find(p);
            int q_root = find(q);
            if(p_root != q_root) return false;
            else return true;
        }

        public int count() { 
            return this.count; 
        }
        
    }
    
    public int countComponents(int n, int[][] edges) {
        UF uf = new UF(n); 

        for(int[] e : edges) {
            int root1 = uf.find(e[0]);
            int root2 = uf.find(e[1]);
            if(root1 != root2) {      
                uf.union(root1, root2);
            }
        }
        return uf.count();
    }

}
class Solution {
    
    public int countComponents(int n, int[][] edges) {
        int[] roots = new int[n];
        for(int i = 0; i < n; i++) roots[i] = i; 

        for(int[] e : edges) {
            int root1 = find(roots, e[0]);
            int root2 = find(roots, e[1]);
            if(root1 != root2) {      
                roots[root1] = root2;  // union
                n--;
            }
        }
        return n;
    }

    public int find(int[] roots, int id) {
        while(roots[id] != id) {
            roots[id] = roots[roots[id]];  // optional: path compression
            id = roots[id];
        }
        return id;
    }

}

Solution1b Code:

class Solution {
    public int countComponents(int n, int[][] edges) {
        int[] roots = new int[n];
        for(int i = 0; i < n; i++) roots[i] = i; 

        for(int[] e : edges) {
            int root1 = find(roots, e[0]);
            int root2 = find(roots, e[1]);
            if(root1 != root2) {      
                roots[root1] = root2;  // union
                n--;
            }
        }
        return n;
    }

    public int find(int[] roots, int id) {
        while(roots[id] != id) {
            roots[id] = roots[roots[id]];  // optional: path compression
            id = roots[id];
        }
        return id;
    }

}

Solution2 Code:

public class Solution {
    
    public int countComponents(int n, int[][] edges) {
        if (n <= 1) {
            return n;
        }
        
        // graph = adj_list init
        List> graph = new ArrayList>();
        for(int i = 0; i < n; i++) {
            graph.add(new ArrayList()); // LinkedList is also OK
        }

        // graph(adj_list) build
        // i -> j node pairs
        for (int i = 0; i < edges.length; i++) {
            int pre = edges[i][0];
            int post = edges[i][1];
            graph.get(pre).add(post); 
            graph.get(post).add(pre);
        }
        
        boolean visited[] = new boolean[n];
        int count = 0;
        for(int i = 0; i < n; i++) {
            if(!visited[i]) {
                dfs(graph, i, visited);
                count++;
            }
        }
        
        return count;
    }
    
    private void dfs(List> graph, int start, boolean[] visited) {
        visited[start] = true;
        for (int des : graph.get(start)) {
            if(!visited[des]) {
                dfs(graph, des, visited);
            }
        }
    }
}

Solution3 Code:

public class Solution {
    
    public int countComponents(int n, int[][] edges) {
        if (n <= 1) {
            return n;
        }
        
        // graph = adj_list init
        List> graph = new ArrayList>();
        for(int i = 0; i < n; i++) {
            graph.add(new ArrayList()); // LinkedList is also OK
        }

        // graph(adj_list) build
        // i -> j node pairs
        for (int i = 0; i < edges.length; i++) {
            int pre = edges[i][0];
            int post = edges[i][1];
            graph.get(pre).add(post); 
            graph.get(post).add(pre);
        }
        
        boolean visited[] = new boolean[n];
        int count = 0;
        for(int i = 0; i < n; i++) {
            if(!visited[i]) {
                dfs(graph, i, visited);
                count++;
            }
        }
        
        return count;
    }
    
    private void dfs(List> graph, int start, boolean[] visited) {
        Deque stack = new ArrayDeque();
        
        stack.push(start);
        visited[start] = true;
        
        while(!stack.isEmpty())  
        {
            int from = stack.pop();
            for(int des : graph.get(from)) {
                if(visited[des]) continue;
                stack.push(des);
                visited[des] = true;
            }
        }
    }
}

Solution4 Code:

public class Solution {
    
    public int countComponents(int n, int[][] edges) {
        if (n <= 1) {
            return n;
        }
        
        // graph = adj_list init
        List> graph = new ArrayList>();
        for(int i = 0; i < n; i++) {
            graph.add(new ArrayList()); // LinkedList is also OK
        }

        // graph(adj_list) build
        // i -> j node pairs
        for (int i = 0; i < edges.length; i++) {
            int pre = edges[i][0];
            int post = edges[i][1];
            graph.get(pre).add(post); 
            graph.get(post).add(pre);
        }
        
        boolean visited[] = new boolean[n];
        int count = 0;
        for(int i = 0; i < n; i++) {
            if(!visited[i]) {
                dfs(graph, i, visited);
                count++;
            }
        }
        
        return count;
    }
    
    private void dfs(List> graph, int start, boolean[] visited) {
        Queue queue = new LinkedList();
        
        queue.offer(start);
        visited[start] = true;
        
        while(!queue.isEmpty())  
        {
            int from = queue.poll();
            for(int des : graph.get(from)) {
                if(visited[des]) continue;
                queue.offer(des);
                visited[des] = true;
            }
        }
    }
}

你可能感兴趣的:(323. Number of Connected Components in an Undirected Graph)