- 【DL经典回顾】激活函数大汇总(四)(Softmax & Softplus附代码和详细公式)
夺命猪头
python机器学习人工智能神经网络numpy
激活函数大汇总(四)(Softmax&Softplus附代码和详细公式)更多激活函数见激活函数大汇总列表一、引言欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数扮演着不可或缺的角色,它们决定着神经元的输出,并且影响着网络的学习能力与表现力。鉴于激活函数的重要性和多样性,我们将通过几篇文章的形式,本篇详细介绍两种激活函数,旨在帮助读者深入了解各种激活函数的
- LLM 的Top-P参数 是在LLM中的每一层发挥作用,还是最后一层?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython人工智能算法机器学习transformer自然语言处理
LLM的Top-P参数是在LLM中的每一层发挥作用,还是最后一层?Top-P(核采样)是在大语言模型(LLM)生成文本的最后一步发挥作用,具体来说是在模型输出**原始分数(Logits)**之后、应用Softmax函数生成概率分布之前进行筛选。它的作用机制与Temperature(温度)类似,但逻辑不同,以下从技术原理、代码实现和应用场景三个维度展开说明:一、技术原理:仅作用于生成阶段的最后一步1
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- 2.线性神经网络--Softmax回归
温柔济沧海
深度学习神经网络回归人工智能
2.1从零实现Softmax回归#数据集导入importtorchimporttorchvisionfromtorchvisionimporttransformsimportmatplotlib.pyplotaspltfromtqdmimporttqdmfromtorch.utils.dataimportDataLoader#####################################
- Pytorch:nn.Linear中是否自动应用softmax函数
浩瀚之水_csdn
深度学习目标检测#Pytorch框架pytorch人工智能python
在本文中,我们将介绍Pytorch中的nn.Linear模块以及它是否自动应用softmax函数。nn.Linear是Pytorch中用于定义线性转换的模块,常用于神经网络的全连接层。一、什么是nn.Linearnn.Linear是PyTorch中的一个类,它是实现线性变换的模块。nn.Linear的主要作用是将输入张量和权重矩阵相乘,再添加偏置,生成输出张量。我们来看一个简单的示例,展示如何使用
- 基于Python+Vue开发的民宿客房预订管理系统源码+远程运行
西门吹雪1998
python课程设计python毕业设计pythonvue.js开发语言
项目简介该项目是基于Python+Vue开发的民宿客房预订管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的民宿客房预订管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。给师弟开发的课程作业,希望他能学习。在线演示演示地址:https:/
- 【课程设计】基于python+django+vue.js开发的健身房管理系统
功能介绍平台采用B/S结构,后端采用主流的Python语言进行开发,前端采用主流的Vue.js进行开发。给师妹的课程作业。功能包括:教练管理、会员管理、场地管理、设备管理、用户管理、日志管理、系统信息模块。源码地址https://github.com/geeeeeeeek/python_fitness演示地址http://fitness.gitapp.cn演示帐号:用户名:admin123密码:a
- 数据挖掘 关联规则挖掘 Apriori算法 C++实现
王者灵梦
数据挖掘c++机器学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Apriori是什么,大致步骤?二、全部代码全部代码总结前言本文只是基于课程作业的相关理解,请谨慎参考,如有不妥,欢迎各位批评指正。一、Apriori是什么,大致步骤?示例:Apriori算法是一种最有影响的布尔关联规则频繁项集的算法,Apriori使用一乘坐逐层扫描的迭代方法,“K-1”项集用于搜索“K”项集。大致步
- 预训练语言模型之:Encoder-only PLM
抱抱宝
大模型语言模型人工智能自然语言处理
1.基础架构:TransformerEncoder所有模型的基石都是TransformerEncoder结构,其核心是自注意力机制:Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q,K,V)=\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)VAttention(Q,K,V)=softmax(dk
- 基于python+django的商城网站-电子商城管理系统源码+运行步骤
西门吹雪1998
python毕业设计python课程设计pythondjango开发语言
基于python开发的电子商城网站,平台采用B/S结构,后端采用主流的Python语言进行开发,前端采用主流的Vue.js进行开发。该系统是给师弟做的课程作业。同学们可以拿去自用。技术学习共同进步哦整个平台包括前台和后台两个部分。前台功能包括:首页、商品详情页、用户中心模块。后台功能包括:总览、订单管理、商品管理、分类管理、标签管理、评论管理、用户管理、运营管理、日志管理、系统信息模块。源码下载h
- 【动手学深度学习】4.2~4.3 多层感知机的实现
XiaoJ1234567
《动手学深度学习》深度学习人工智能MLP多层感知机
目录4.2.多层感知机的从零开始实现1)初始化模型参数2)激活函数3)模型4)损失函数5)训练4.3.多层感知机的简洁实现1)模型2)小结.4.2.多层感知机的从零开始实现现在让我们实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集。importtorchfromtorchimportnnfromd2limporttorcha
- BERT-NER-Pytorch 深度学习教程
富茉钰Ida
BERT-NER-Pytorch深度学习教程BERT-NER-PytorchChineseNER(NamedEntityRecognition)usingBERT(Softmax,CRF,Span)项目地址:https://gitcode.com/gh_mirrors/be/BERT-NER-Pytorch1.项目介绍BERT-NER-Pytorch是一个基于PyTorch实现的中文命名实体识别(
- 激活层为softmax时,CrossEntropy损失函数对激活层输入Z的梯度
Jcldcdmf
AI机器学习损失函数交叉熵softmax
∂L∂Z=y^−y\frac{\partialL}{\partialZ}=\hat{y}-y∂Z∂L=y^−y其中yyy为真实值,采用one-hot编码,y^\hat{y}y^为softmax输出的预测值证明:\textbf{证明:}证明:根据softmax公式:y^i=ezi∑j=1nezj\hat{y}_i=\frac{e^{z_i}}{\sum_{j=1}^ne^{z_j}}y^i=∑j=1
- 理解Logits、Softmax和softmax_cross_entropy_with_logits的区别
1010n111
机器学习
理解Logits、Softmax和softmax_cross_entropy_with_logits的区别技术背景在机器学习尤其是深度学习中,分类问题是一个常见的任务。在解决分类问题时,我们需要将模型的输出转换为概率分布,以便确定每个类别的可能性。同时,我们需要一个损失函数来衡量模型预测结果与真实标签之间的差异,从而进行模型的训练和优化。在TensorFlow中,logits、softmax和so
- 基于Java+Springboot+Vue开发的新闻管理系统- 课程作业- 课程设计
项目简介该项目是基于Java+Springboot+Vue开发的新闻管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Java编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Java的新闻管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。在线演示演示地址:https://news.gitapp.cn源码下载ht
- LLM输出优化秘籍:Dify参数调节技巧大揭秘!
AI大模型-大飞
人工智能机器学习大模型AI大模型程序员语言模型大模型教程
引言随着大语言模型(LLM)在文本生成、对话系统等领域的广泛应用,参数调节已成为开发者必须掌握的核心技能。本文深入解析温度(Temperature)、TopP、TopK等关键参数的作用机制,并提供面向不同场景的配置策略,帮助开发者实现生成质量与多样性的精准控制。一、核心参数详解1.温度(Temperature)作用机制:通过softmax函数调整预测分布调节范围:0-1效果对比:温度值生成质量多样
- MSE做多分类任务如何
用「考试打分」来类比,秒懂为啥多分类任务很少用MSE,以及硬用会出啥问题~一、多分类任务的「常规操作」:交叉熵vsMSE1.多分类任务长啥样?例子:手写数字识别(0-9共10类)、动物图片分类(猫/狗/鸟等)。目标:模型输出每个类别的概率,选概率最高的作为预测结果。2.交叉熵为啥是「标配」?输出:配合softmax激活函数,输出每个类别的概率(和为1)。判卷逻辑:看「预测概率是否接近真实类别」,比
- PyTorch张量操作中dim参数的核心原理与应用技巧:
AI扶我青云志
pytorch人工智能
今天在搭建神经网络模型中重写forward函数时,对输出结果在最后一个维度上应用Softmax函数,将输出转化为概率分布。但对于dim的概念不是很熟悉,经过查阅后整理了一下内容。PyTorch张量操作精解:深入理解dim参数的维度规则与实践应用在PyTorch中,张量(Tensor)的维度操作是深度学习模型实现的基础。dim参数作为高频出现的核心概念,其取值逻辑直接影响张量运算的结果。本文将从维度
- 26 - UFO模块
Leo Chaw
深度学习算法实现人工智能深度学习pytorch计算机视觉
论文《UFO-ViT:HighPerformanceLinearVisionTransformerwithoutSoftmax》1、作用UFO-ViT旨在解决传统Transformer在视觉任务中所面临的主要挑战之一:SA机制的计算资源需求随输入尺寸的平方增长,这使得处理高分辨率输入变得不切实际。UFO-ViT通过提出一种新的SA机制,消除了非线性操作,实现了对计算复杂度的线性控制,同时保持了高性
- 多分类与多标签分类的损失函数
麦格芬230
自然语言处理
使用神经网络处理多分类任务时,一般采用softmax作为输出层的激活函数,使用categorical_crossentropy(多类别交叉熵损失函数)作为损失函数,输出层包含k个神经元对应k个类别。在多标签分类任务中,一般采用sigmoid作为输出层的激活函数,使用binary_crossentropy(二分类交叉熵损失函数)作为损失函数,就是将最后分类层的每个输出节点使用sigmoid激活函数激
- 缩放点积模型:如何巧妙化解Softmax梯度消失难题?
摘取一颗天上星️
深度学习损失函数标准点积梯度消失
在Transformer模型中,缩放点积注意力(ScaledDot-ProductAttention)通过一个看似简单的操作——除以维度的平方根——解决了Softmax梯度消失的核心问题。本文将深入剖析其背后的数学原理和实际效果。一、问题根源:标准点积的Softmax为何梯度消失?假设查询向量q和键向量kᵢ的维度为dₖ,且其元素服从均值为0、方差为1的独立分布。点积qᵀkᵢ的方差为:Var(qᵀk
- 机器学习专栏(36):逻辑回归与Softmax回归全解析(附完整代码与可视化)
Sonal_Lynn
人工智能专题机器学习逻辑回归回归
目录一、逻辑回归:概率世界的"温度计"1.1核心原理:从线性到概率的魔法转换1.2Sigmoid函数:概率转换的核心引擎1.3实战案例:鸢尾花二分类二、模型训练:损失函数的艺术2.1对数损失函数解析2.2正则化实战技巧三、Softmax回归:多分类的终极武器3.1数学原理深度解析3.2多分类实战技巧四、工业级应用指南4.1特征工程黄金法则4.2模型评估矩阵4.3超参数调优模板五、避坑指南:常见误区
- 【OpenCV】cv::exp函数详解
浩瀚之水_csdn
#OpenCV学习opencv人工智能计算机视觉
cv::exp是OpenCV中用于对矩阵中的每个元素进行自然指数运算(即ex)的函数,常用于图像增强、概率计算或机器学习中的激活函数(如Softmax)。以下是详细解析:函数原型voidcv::exp(InputArraysrc,OutputArraydst);参数说明:src:输入矩阵(CV_32F或CV_64F类型)。dst:输出矩阵,大小和通道数与src相同,数据类型自动匹配为CV_32F或
- KV Cache:大模型推理加速的核心机制
非常大模型
大模型语言模型人工智能
当AI模型生成文本时,它们经常会重复许多相同的计算,这会降低速度。KVCache是一种技术,它可以通过记住之前步骤中的重要信息来加快此过程。模型无需从头开始重新计算所有内容,而是重复使用已经计算过的内容,从而使文本生成更快、更高效。从矩阵运算角度理解KVCache让我们从最基础的注意力机制开始。标准的self-attention计算公式大家都很熟悉:Attention(Q,K,V)=softmax
- 人工智能与大模型技术:从理论到实践的黄金指南
NIHILISM DAMN
人工智能python人工智能
一、破解技术迷雾:大模型的核心原理与演进逻辑1.Transformer架构的数学之美2017年Google提出的Transformer模型,通过自注意力机制(Self-Attention)实现了序列建模的突破。其核心公式可表示为:Attention(Q,K,V)=softmax(QKTdk)VAttention(Q,K,V)=softmax(dkQKT)V其中QQ(Query)、KK(Key)、V
- 人工智能与大模型技术:从理论到实践的黄金指南
NIHILISM DAMN
人工智能python人工智能
一、破解技术迷雾:大模型的核心原理与演进逻辑1.Transformer架构的数学之美2017年Google提出的Transformer模型,通过自注意力机制(Self-Attention)实现了序列建模的突破。其核心公式可表示为:Attention(Q,K,V)=softmax(QKTdk)VAttention(Q,K,V)=softmax(dkQKT)V其中QQ(Query)、KK(Key)、V
- triton学习笔记2: 循环优化术
Puzzles8:Longsoftmaxpuzzles8是计算batch的softmax,题目如下:Softmaxofabatchoflogits.Usesoneprogramblockaxis.BlocksizeB0representsthebatchofxoflengthN0.BlocklogitlengthT.ProcessitB1Float32[4,200]:x_max=x.max(1,k
- 人工智能与大模型技术:从理论到实践的黄金指南
张家铭02
人工智能python人工智能
一、破解技术迷雾:大模型的核心原理与演进逻辑1.Transformer架构的数学之美2017年Google提出的Transformer模型,通过自注意力机制(Self-Attention)实现了序列建模的突破。其核心公式可表示为:Attention(Q,K,V)=softmax(QKTdk)VAttention(Q,K,V)=softmax(dkQKT)V其中QQ(Query)、KK(Key)、V
- 【知识点】大模型面试题汇总(持续更新)
XD742971636
深度学习机器学习大模型深度学习面试题
1.ScaledDot-ProductAttention中的缩放因子(√d)作用问题:为什么计算QK内积后要除以√d?答案:•核心原因:防止点积结果过大导致softmax进入饱和区(梯度消失)。•数学解释:假设Q、K的每个维度是独立零均值、方差为1的随机变量,点积结果的方差为d。缩放后方差恢复为1,稳定梯度。•替代方案:初始化时缩小参数方差(如除以√d),但动态缩放更鲁棒。2.Q/K使用不同权重矩
- 大模型中的KV Cache
为啥全要学
大模型pythonkv缓存python大模型kv缓存
1.KVCache的定义与核心原理KVCache(Key-ValueCache)是一种在Transformer架构的大模型推理阶段使用的优化技术,通过缓存自注意力机制中的键(Key)和值(Value)矩阵,避免重复计算,从而显著提升推理效率。原理:自注意力机制:在Transformer中,注意力计算基于公式:Attention(Q,K,V)=softmax(QK⊤dk)V=∑i=1nwivi(加权
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen