- 网络安全态势感知:企业数字化转型的 “安全密钥”
知白守黑V
安全运营网络安全态势感知网络
在数字经济飞速发展的当下,网络安全已经成为企业平稳运营的关键所在。从大型企业的数据泄露事故,到中小企业遭遇的各类网络攻击,网络安全威胁无处不在。而网络安全态势感知产品,作为应对复杂网络威胁的关键技术,正逐渐成为企业守护数字资产的“智慧大脑”。一、态势感知:全景掌控,精准防御你可以把网络安全态势感知想象成企业网络的“超级侦察兵”。它借助大数据分析、机器学习这些先进技术,就像是拥有了超级强大的“洞察力
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 基于数智立体化V2.0体系构建医疗综合智能体:理论、实践与展望
Allen_LVyingbo
医疗高效编程研发python健康医疗知识图谱python
一、引言1.1研究背景与意义医疗行业作为关乎人类生命健康与社会福祉的重要领域,始终处于不断发展与变革的进程之中。在当下,随着全球人口老龄化趋势的加剧,慢性疾病的发病率持续攀升,人们对医疗服务的需求呈现出快速增长且日益多样化的态势。与此同时,传统医疗模式在应对这些挑战时,逐渐暴露出诸多问题,如医疗资源分布不均衡,偏远地区和基层医疗机构面临着医疗技术匮乏、设备陈旧等困境;医疗服务效率低下,患者就医等待
- 线性回归——最小二乘法代数详细计算过程
在天愿作比翼鸟在地愿为连理枝
机器学习和人工智能学习概述线性回归最小二乘法机器学习
Reference:动手实战人工智能AIByDoing关于矩阵方法的求解可参考:最小二乘法矩阵详细计算过程基本定义:通过找到一条直线去拟合数据点的分布趋势的过程,就是线性回归的过程。在上图呈现的这个过程中,通过找到一条直线去拟合数据点的分布趋势的过程,就是线性回归的过程。而线性回归中的「线性」代指线性关系,也就是图中所绘制的红色直线。所以,找到最适合的那一条红色直线,就成为了线性回归中需要解决的目
- 《数据孤岛:AI模型训练之殇,精度与泛化的双重困境》
人工智能深度学习
在人工智能飞速发展的当下,数据就是模型的“燃料”。从医疗影像诊断到智能交通调度,从电商推荐系统到金融风险预测,AI模型的精准度与泛化能力,决定了其在实际应用中的价值。然而,一个棘手的问题正阻碍着AI前行的步伐——数据孤岛。数据孤岛,是指在组织内部或不同组织之间,由于系统、管理或流程的原因,数据被孤立存储在不同的数据库、应用程序或部门中,彼此之间缺乏有效的连接和整合。据权威机构调研,在高度信息化的企
- 分享当下最热门的AI工具合集
香橙薄荷心
人工智能人工智能
1、ChatGPTChatGPT一个基于人工智能技术的虚拟助手,旨在为用户提供信息、解答问题和协助完成各种任务。我能够处理多种主题,包括但不限于科学、技术、文化、历史等领域。我的目标是为您提供准确、及时的帮助,以提升您的工作和生活效率这个,可免费使用GPT-3.5和GPT-4.0模型~推荐指数:⭐⭐⭐⭐⭐链接:点击直达>>>2、ChatGAIChatGAI是一个基于人工智能技术的语言模型,旨在理解
- 66道软件工程面试八股文(答案、分析和深入提问)整理
ocean2103
面试题软件工程面试职场和发展
1.软件测试的策略是什么?回答软件测试的策略是确保软件产品的质量和稳定性,以便满足用户需求和期望。下面是一些常见的软件测试策略:手动测试与自动化测试:手动测试:测试人员手动执行测试用例,以发现软件缺陷。自动化测试:使用自动化工具执行测试,提高效率和可重复性,尤其适用于回归测试。黑盒测试与白盒测试:黑盒测试:关注于软件的功能和输出,不考虑内部实现细节。白盒测试:关注软件内部的逻辑结构,测试代码的每个
- FPGA在空间领域应用的权衡之道
forgeda
EDA硬件辅助验证fpga开发硬件架构嵌入式硬件EDA硬件辅助验证故障注入测试SEUEmulation商业航天
新官上任,干货较多。去年10月30日,紫光国微在投资者关系活动中表示,对FPGA产品的国产化率以及未来价格压力趋势的答复是,除了个别品类外,FPGA领域已基本完成国产化替代。价格竞争激烈,现有存量市场需求不足,导致产品价格成为重要竞争手段等。价格是市场新进入者的唯一机会,FPGA行业自然也不例外。当下火热的“智算概念”,如果说GPU在数据中心堆算力的方式有多风光,那么在追求性能之外,必须权衡SWa
- 梯度提升决策树树(GBDT)公式推导
化作星辰
决策树算法机器学习
###逻辑回归的损失函数逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为:\[P(y=1|x)=\frac{1}{1+e^{-F(x)}}\]其中\(F(x)\)是一个线性组合函数,通常表示为:\[F(x)=\sum_{m=0}^{M}h_m(x)\]这里的\(h_m(x)\)是学习到的决策树。###损失函数的推导对于单个样本\((x_i,y_i)\),逻
- 浅谈视频智能化的发展与应用
weixin_33692284
前端后端人工智能ViewUI
视频监控发展到今天,大家对视频系统规模的快速发展是有目共睹的。近年来基于成熟的以太网技术,大规模数字化视频监控系统的建设变得非常简单,很多项目拥有成百上千个前端点位,达到上万个前端点位的超大规模监控系统也不少见。随着视频监控系统规模的增加,在图像质量越来越好的当下,能否让摄像机看懂正在发生的事件并提出告警,这正是近年来非常流行的智能化需求的由来。本文将对目前智能视频分析技术的发展做些简单的阐述。一
- 【系统架构设计师】高分论文:论分布式架构设计及其实现
数据知道
系统架构设计师(软考高级)系统架构分布式架构软考高级系统架构设计师论文
更多内容请见:备考系统架构设计师-专栏介绍和目录文章目录摘要正文摘要我所在的公司是一家ToB的软件公司,主营业务是为中大型企业提供资金管理系统软件,帮助企业“知道钱”“管住钱”。2022年2月,由于现有系统的技术栈过于陈旧,无法满足当下客户的需求,公司决定采用当下的主流技术开发一套新的资金管理系统。我担任本次系统开发的架构师,主要负责整个系统的架构设计工作。本文以该资金管理系统的建设为例,介绍我们
- 云起无垠入选中国信息通信研究院2024年度首期“磐安”优秀案例
人工智能
近日,中国信通院举办的深度观察报告会系列论坛在北京顺利召开。在数字生态治理分论坛上,2024年度首期“磐安”优秀案例——AI+数字安全应用优秀案例遴选结果正式公布,云起无垠凭借其在生成式AI网络安全攻防对抗垂直领域扎实的研究及应用成果,成功入选该年度首期“磐安”优秀案例。当下,数字化浪潮席卷全球,信息技术广泛渗透各个产业。云计算、大数据、人工智能、物联网等前沿技术深度融合,传统制造业生产线、现代服
- 勒索病毒侵袭,企业数据安全的 “生死时速” 与应对攻略
知白守黑V
安全运营数据安全勒索病毒数据安全系统安全勒索病毒应急处置安全防护安全合规安全加固
在当下数字化的汹涌浪潮中,勒索病毒犹如隐匿于网络暗域的“数字劫匪”,冷不丁便会对企业的数据安全防线发动致命突袭。一旦遭受攻击,企业极有可能面临业务的全面停摆、核心数据的丢失,甚至是信誉的严重受损,其损失难以估量。故而,企业必须紧握这份“防勒索病毒秘籍”,方能从容应对病毒威胁。一、应急处置,争分夺秒紧急隔离,斩断病毒“传播链路”一旦发现设备感染勒索病毒,应立即采取行动,切断网络连接、关闭电源,这如同
- R数据分析:多分类问题预测模型的ROC做法及解释
公众号Codewar原创作者
R数据分析
有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评估指标。那么肯定是统一成ROC了,刚好借这个机会给大家讲讲ROC在多分类问题情形下的具体使用和做法。ROC曲线回顾ROC曲线(ReceiverOperatingCharacteristicCurve)
- c++计算精解【12】
sakura_sea
物理模拟与3D计算c++开发语言
文章目录多元线性回归决定系数数学原理R2R^2R2调整R2R^2R2c++实现参考文献多元线性回归决定系数数学原理R2R^2R2R2R^2R2(决定系数)反映了自变量(输入变量)对因变量(输出变量)变异的解释能力。R2=1−SSresidualSStotalR^2=1-\frac{SS_{\text{residual}}}{SS_{\text{total}}}R2=1−SStotalSSresid
- 【数据挖掘实战】 房价预测
机器学习司猫白
数据挖掘人工智能python机器学习
本次对kaggle中的入门级数据集,房价回归数据集进行数据挖掘,预测房屋价格。本人主页:机器学习司猫白机器学习专栏:机器学习实战PyTorch入门专栏:PyTorch入门深度学习实战:深度学习ok,话不多说,我们进入正题吧概述本次竞赛有79个解释变量(几乎)描述了爱荷华州艾姆斯住宅的各个方面,需要预测每套住宅的最终价格。数据集描述本次数据集已经上传,大家可以自行下载尝试文件说明train.csv-
- 在电商行业中 API 是什么意思?
前端后端运维数据挖掘api
在电商行业飞速发展的当下,各类应用和服务层出不穷,背后支撑它们高效运转的,是一个关键的技术概念——API。无论是在商品展示、订单处理,还是物流跟踪等环节,API都扮演着不可或缺的角色。对于电商从业者、开发者以及相关爱好者来说,深入理解API在电商领域的含义和作用,是把握行业技术脉搏、推动业务创新的基础。本文将详细阐述电商行业中API的概念、类型、应用场景,并通过代码示例让大家更直观地感受其实际应用
- Python语法总结
彧侠
脚本处理Python
Python作为一种解释型的脚本语言,无论从自动化运维、大数据处理还是人工智能都得到了广泛的应用,而且它好理解、易学习、上手快的特点也使它成为了当下最火热的开发语言之一。下面就对Python语言中的各种语法做一个总结,以备后用数据类型一、整数二、浮点数三、字符串四、布尔值五、空值print语句注释什么是变量比如:定义字符串raw字符串与多行字符串Unicode字符串字符串还有一个编码问题。整数和浮
- 唯品会按关键字搜索 VIP 商品 API 接口的开发应用与收益
前端后端运维数据挖掘api
在电商行业蓬勃发展的当下,精准高效的商品搜索功能对于提升用户购物体验和商家销售业绩至关重要。唯品会作为知名的电商平台,其按关键字搜索VIP商品的API接口在这一过程中发挥着关键作用。接下来将深入探讨该API接口的开发应用以及所能带来的收益。一、API接口开发基础(一)接口设计目标设计唯品会按关键字搜索VIP商品API接口的主要目标是为了实现高效、精准的商品检索。当用户输入特定关键字时,接口能够快速
- 新能源行业必会基础知识-----电力现货市场理论篇-----电力市场概述-----电力市场模式选择
殷丿grd_志鹏
新能源新能源电力市场经济学电力现货行业知识
新能源行业必会基础知识-----电力现货市场理论篇-----主目录-----持续更新https://blog.csdn.net/grd_java/article/details/143364261这本书是2023年出版的,是当下了解国内电力市场最好的途径了。还是推荐大家买来这本书进行阅读观看,最好作为随身携带的查阅工具书。内容均为阅读此书后,基于个人理解进行的总结,如有错误还请指正。推荐搭配书本阅
- 借助HAP推动旅游业数字化转型,12家客户的实践案例与心得
前端
摘要:文章介绍了深圳同天下科技有限公司从做旅游SaaS系统到转向明道云业务的历程及客户情况变化,随后阐述四点实践心得,包括通过明道云业务站着挣钱、凭借行业经验结合HAP确立自身定位、根据实际情况选择大客户服务、采用如沟通业务流程、拆分模块、适时增加工作表、及时止损等方式实现低风险交付,最后总结服务客户策略变化的感悟,强调服务大客户更契合当下情况。公司及业务背景介绍公司概况与业务范围深圳同天下科技有
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 车规芯片SOC简介
车载诊断技术
车载电子电气架构车载通信架构汽车网络人工智能电子电器架构架构
一、背景信息汽车电动化、智能化引领产业变革,关注“自动驾驶”及“智能座舱”,汽车行业正在经历电动化、智能化革命,电动化主要改变汽车的动力和传动系统,智能化则改变了人与车之间的关系。从PC时代的微软、智能手机时代的苹果,以及到破万亿市值的特斯拉,属于智能电动车的新时代已经拉开帷幕,当下时点为汽车行业新周期起点,电动及智能化革命将颠覆整个汽车产业链,也将孕育新的产业生机。目前汽车行业有如下三大趋势:1
- 解放双手,畅享小程序广告自动化操作之旅
|全流程自动化脚本开发商|
小程序自动化大数据
引言在数字化营销浪潮汹涌澎湃的当下,小程序广告已然成为众多企业与品牌推广的关键阵地。然而,对于广大运营者和营销人员而言,每日面对海量小程序广告,手动操作不仅耗时费力,效率低下,还极易因人为疏忽而出现遗漏或错误。你是否常常在繁琐的广告点击、链接发送以及时间把控中感到力不从心?今天,一款全新的小程序广告自动化操作工具震撼登场,它犹如一位智能高效的助手,精准解决你的所有困扰,带你开启小程序广告处理的全新
- 新项目性能测试全攻略:从规划到落地
测试工程师成长之路
测试工程师成长之路性能测试
一、性能测试的重要性在当今数字化的时代,新项目如雨后春笋般不断涌现,而性能测试在其中扮演着至关重要的角色。对于一个新项目来说,性能的好坏直接影响着用户体验。想象一下,如果用户在使用一款电商APP时,加载商品页面需要漫长的等待时间,或者在进行支付操作时频繁出现卡顿,那么大概率会导致用户的流失,进而影响整个业务的发展。性能测试不仅关乎用户当下的使用感受,更是关乎项目的长期运营和业务的成败。从企业角度来
- 岭回归预测PM2.5
qianjinwang
python
#-*-coding:utf-8-*-#@File:demo2.py#@Author:CJH#@Date:2019/4/9#@Software:PyCharm#@Desc:天气PM2.5预测importcsvimportnumpyasnpfromnumpyimport*importmatplotlib.pyplotaspltfromsklearnimportlinear_modeltraining
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
m0_74823683
面试学习路线阿里巴巴transformer架构深度学习
1.LLM基础架构类型DenseTransformerMoE(MixtureofExperts)TransformerHybrid-MoETransformer2.Transformer按照编码方式分类单向自回归模型(如早期GPT系列)双向模型(如BERT)编码器-解码器模型(如BART,T5)DenseTransformerDenseTransformer的优势是什么DenseTransform
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key