dijkstra算法:寻找到全图各点的最短路径

dijkstra算法介绍:即迪杰斯特拉算法,是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止,是一种广度优先的搜索方法。
dijkstra算法原理:最优子路径存在。假设从S→E存在一条最短路径SE,且该路径经过点A,那么可以确定SA子路径一定是S→A的最短路径。证明:反证法。如果子路径SA不是最短的,那么就必然存在一条更短的'SA,从而SE路径也就不是最短,与原假设矛盾。
dijkstra算法缺点:与此前说过的viterbi不同,此算法能够求出从起点到其余每个结点的最短路径,所以需要遍历所有的路径和结点,计算复杂度比较大。
dijkstra算法例子:求从结点0到各个结点的最短路径。

dijkstra算法:寻找到全图各点的最短路径_第1张图片

step1:首先建立两个集合S={}:表示已经找到最短路径的结点;U={}:表示尚未找到最短路径的结点。显然,S与U互为补集,S U U=所有结点组成的集合,当U为空的时候算法结束,所有结点最短路径均已找到。
step2:建立一个数组dist[i],用于存放起点0到该结点i的最短路径(可能需要更新,接下来会解释)。然后再建立一个布尔数组s[i](初值均为0),用于表示该结点是否已经找到最短路径,如已经找到便不再遍历。
step3:具体执行部分:
A:
初始点设定。
对于结点0,首先将其纳入到S集合中,然后寻找并计算与结点0直接相连路径的长度,即dist[1]=100,dist[30]=2,dist[4]=10(这时dist[0]=0)。而不能直接到达的结点距离为无限大∞。这里使用dist[3]=99999,方便程序比较大小。然后使s[0]=1,表示已经遍历过该结点。
B:选取最小dist[i]。比较dist[1],dist[3],dist[4]的长度,选择长度最短的dist[4],并将结点4纳入到S集合中,令s[4]=1,表明0到4的最短路径已经找到,且值为10。原因:最优子路径存在原理。由于dist[1],dist[3]均大于dist[4],所以若选择走经过结点1、3到达结点4路径,无论如何也不可能找到一条小于直接从结点0到结点4的路径!这个结论非常非常非常重要,是理解这个算法的关键!后面会反复用到,每一轮循环都要比较并选取最小的dist[i]。
C:更新dist[i]。现在,我们开始以结点4为中心向外扩展(广度优先)。现在,结点4可以到达结点3了,也表明从结点0可以通过结点4到达结点3了。至于要更新dist[i]的原因如下图:
在第一次选择中,我们纳入了起点A,然后由于dist[C]=6

dijkstra算法:寻找到全图各点的最短路径_第2张图片

step4:重复上述步骤B、C,直到U集合清空,s[i]中所有值均为1。这就表明图中所有点都找到了最短路径。

下面放出以上例子的步骤表,如果能理解就表明基本了解dijkstra算法的思想了。

dijkstra算法:寻找到全图各点的最短路径_第3张图片

最后,从结点0到各个点的最短路径就都算出来了。
dijkstra算法重点:理解为何需要选取最小的dist[i];理解为何需要更新dist[i]。

以下是具体C++代码实现,这里还加入了最短路径经过结点的记录。

#include 
using namespace std;
 
const int maxnum = 100;
const int maxint = 999999;
 
 
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
    bool s[maxnum];    // 判断是否已存入该点到S集合中
    
    // 确认起始节点并设置相关参数
    for(int i=1; i<=n; ++i)
    {
        dist[i] = c[v][i];     // 将邻接矩阵中数据传入dist[]中
        s[i] = 0;     // 初始所有点都未纳入S中
        if(dist[i] == maxint)
            prev[i] = 0;     // 该点暂时没找到前驱结点
        else
            prev[i] = v;     // 该点的前驱结点为起始点v
    }
    dist[v] = 0;
    s[v] = 1;
 
    // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
    // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
    for(int i=2; i<=n; ++i)
    {
        int tmp = maxint;
        int u = v;
        
        // 找出当前未使用的点j的dist[j]最小值
        for(int j=1; j<=n; ++j)
            if((!s[j]) && dist[j]=1; --i)
        if(i != 1)
            cout << que[i] << " -> ";
        else
            cout << que[i] << endl;
}
 
int main()
{
    // 各数组都从下标1开始
    int dist[maxnum];     // 表示当前点到源点的最短路径长度
    int prev[maxnum];     // 记录当前点的前一个结点
    int c[maxnum][maxnum];   // 记录图的两点间路径长度
    int n, line;             // 图的结点数和路径数
 
    // 输入结点数
    cin >> n;
    // 输入路径数
    cin >> line;
    int p, q, len;          // 输入p, q两点及其路径长度
 
    // 初始化c[][]为maxint
    for(int i=1; i<=n; ++i)
        for(int j=1; j<=n; ++j)
            c[i][j] = maxint;
 
    for(int i=1; i<=line; ++i)  
    {
        cin >> p >> q >> len;
        if(len < c[p][q])       // 有重边
        {
            c[p][q] = len;      // p指向q
            c[q][p] = len;      // q指向p,这样表示无向图
        }
    }
 
    for(int i=1; i<=n; ++i)
        dist[i] = maxint;
    for(int i=1; i<=n; ++i)
    {
        for(int j=1; j<=n; ++j)
            printf("%8d", c[i][j]);
        printf("\n");
    }
    
    // 假定起点为结点1
    Dijkstra(n, 1, dist, prev, c);
 
    // 最短路径长度
    cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
 
    // 路径
    cout << "源点到最后一个顶点的路径为: ";
    
    // 假定起点为结点1
    searchPath(prev, 1, n);
}

你可能感兴趣的:(dijkstra算法:寻找到全图各点的最短路径)